ON CERTAIN DEFINABLE COARSENINGS OF VALUATION
RINGS AND THEIR APPLICATIONS

FRANZ-VIKTOR KUHLMANN

ABSTRACT. We show how suitable extensions (L|K,v) of prime degree of valued
fields give rise to definable coarsenings of the valuation rings of L and K. In the
case of Artin-Schreier and Kummer extensions with wild ramification, we can
also define the ramification ideal. We demonstrate the use of the coarsenings
on L, their maximal ideals, and the ramification ideals for the classification of
defects and for the presentation of the Kéahler differentials of the extension of the
valuation rings of (L| K, v), and their annihilators. Finally, we give a construction
that realizes predescribed convex subgroups of suitable value groups as those that
are associated with Galois extensions of degree p with independent defect, which
in turn give rise to definable coarsenings.

1. INTRODUCTION

In this paper, for Galois extensions (L|K,v) of prime degree, as studied in [2, 3],
we will discuss definable coarsenings of the valuation rings of L and K, and their
applications to the presentation of the Kahler differentials of the extension of the
valuaion rings of (L|K,v). As our main interest are these applications, we will only
deal with definability in suitable expansions of the language L, of valued fields,
instead of the language of rings.

Moreover, we will be interested in definable coarsenings of both the valuation
ring Op, of v on L and the valuation ring Ok of v on K; however, it is the former
that are important for our applications. Under certain additional assumptions
the coarsenings of Ok have already been shown in [6] to be definable in the ring
language.

The notions and notations we will now use will be introduced in Section 2.

1.1. Coarsenings defined from immediate elements in valued field exten-
sions. Take any valued field extension (L| K, v) and an arbitrary element z € L\ K.
For a nonempty subset M C K we define

v(z—=M) :={v(z—¢c)|ce M} C vL.

If M = K, then the set v(z — K) N vK is an initial segment of vK. For the
properties of the sets v(z — K), see [13, Chapter 2.4]. If v(z — K') has no maximal
element, then we call z an immediate element of the extension (L|K,v). In this
case, v(z — K) CvK.

Date: 17. 12. 2025.
2010 Mathematics Subject Classification. 03C60, 12J10, 12J25, 12105, 12L.12.
Key words and phrases. definable coarsenings of valuation rings, defect, wild ramification, Ga-
lois extension of prime degree, Artin-Schreier extension, Kummer extension, Kéhler differentials.
1



2 FRANZ-VIKTOR KUHLMANN

In Section 3, we will define from an immediate element z a coarsening O,k of
the valuation ring Oy, of L in the language Ly,  of valued fields with a predicate
for membership in K. This coarsening plays an important role in our study (/)\f
Galois defect extensions of prime degree. If z does not lie in the completion K
of (K,v), then v(z — K) is bounded from above and —v(z — K) is bounded from
below in v K. In this case,

(1) I.x ={bel|3ce K: vb>—-v(z—c)}

is a (possibly fractional) Op-ideal. When we speak of Op-ideals, we always include
fractional ideals, that is, Op-modules I C L for which there is some a € O such
that al C Oy, .

For an Op-ideal I, its invariance valuation ring O(I) (see the definition in Sec-
tion 2.4) is the largest of all coarsenings O of O, such that [ is an O'-ideal. It is
definable in the ring language augmented by a predicate for membership in 7. We
define O,_k to be the invariance valuation ring of I, _f .

1.2. Galois defect extensions of prime degree. These extensions have been
studied in [16] and [2]. Take a valued field (K,v) with char Kv = p > 0, and a
Galois defect extension & = (L|K,v) of prime degree p. For every o in its Galois
group Gal (L|K), with o #id, we set

2) S, = {v("bb_b)' beLX,ab%b} .

This set is a final segment of vK and independent of the choice of o (see Theo-
rem 4.1); we denote it by ¢ . It is shown in [16, Section 2.4] that

(3) Ie = (beL|vbeXs) ={beL|vbeX:Vb=0}

is the unique ramification ideal of £. We set Og := O(I¢) and denote its maximal
ideal by Mg . We denote by Ly, x the language of valued fields with a predicate
for membership in K and prove in Section 4:

Proposition 1.1. Take a Galois extension € = (L|K,v) of prime degree p.

1) The ideals Og and Mg are Ly, k-definable in (L,v).

2) If char K = 0, then assume in addition that K contains a primitive p-th root of
unity. Then also the ideal I¢ is Lya k-definable in (L,v).

A main aim of this paper is to describe the role the ideals Ig, Og and Mg play
in the description of the structure of Artin-Schreier extensions and Kummer defect
extensions of prime degree. This will be done in Section 4.

We say that £ has independent defect if
(4) I = Mg and Mg is a nonprincipal Og-ideal,
otherwise we will say that £ has dependent defect. We will show in Section 4 that
in the case of Artin-Schreier extensions and Kummer extensions of prime degree,
this definition is equivalent to the one given in [2].

Let us give an example for the importance of independent defect. A valued field

(K,v) is called a roughly deeply ramified field, or in short an rdr field, if the
following conditions hold:
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(DRwvp) if char Kv = p > 0, then vp is not the smallest positive element in the
value group vK,

(DRuvr) if char Kv = p > 0, then Ok /pOf is semiperfect if char K = 0, and the
completion K of (K,v) is perfect if char K = p.
The following is a consequence of [16, Theorem 1.10 1)]:

Theorem 1.2. Assume that (K,v) is a roughly deeply ramified field. Then ev-
ery Galois defect extension € = (L|K,v) of prime degree p = char Kv > 0 has
independent defect.

1.3. Deeply ramified fields and Kéahler differentials. We call (K, v) a deeply
ramified field if it satisfies condition (DRvr) together with

(DRvg) whenever I'y C T'y are convex subgroups of the value group v K, then I'y /Ty
is not isomorphic to Z (that is, no archimedean component of vK is discrete).

Every perfect valued field of positive characteristic p and every perfectoid field is
a deeply ramified field with p-divisible value group. Every deeply ramified field is
an rdr field.

A theorem of Gabber and Ramero uses Kéhler differentials, that is, modules of
relative differentials, to characterize deeply ramified fields (cf. [5, Theorem 6.6.12
(vi)] and [3, Theorem 1.2]). When A is a ring and B is an A-algebra, then we
denote by g4 the Kahler differentials of B|A (see Section 2.3). Given a valued
field (K,v), we denote by K*P the separable algebraic closure and extend v from
K to K*?. The following result does not depend on the choice of the extension of
v since all of the possible extensions are conjugate.

Theorem 1.3. For a valued field (K, v),

(5) onsep\ok =0
holds if and only if (K, v) is a deeply ramified field.

A main goal of the papers [2, 3] is to compute the Kéahler differentials of Galois
extensions £ = (L|K,v) of prime degree of valued fields and use this to give an
alternative proof of Theorem 1.3. According to [2, Theorem 1.1], these Ké&hler
differentials can be represented in the form

(6) Qoo =~ U/UV

where U and V are certain Op-ideals. Their computation in the case of defect
extensions & is dealt with in [2] and we will state the results in Section 4.

1.4. Defectless Galois extensions of prime degree. The paper [3] is devoted
to the case of defectless extensions £; in Section 5 we discuss its results, as well as
the Lya x-definition and the role of the valuation ring O¢ and its maximal ideal
Mg . The interesting case is the one of Galois extensions &€ = (L|K,v) of prime
degree ¢ = (vL : vK) (which this time is not necessarily equal to char Kv). In order
to compute the ideals U and V' appearing in (6) we determined in [3] a presentation
of Oy, as a union over a chain of simple ring extensions of Ok . It depends on a
distinction of three ways in which v K extends to vL, and as a byproduct we obtain
definitions of the valuation ideal Og and Mg . We will show in Section 5.2 that the
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ideal M is necessary for the presentation of U and V', and also for the computation
of the annihilator of Qo |0,

In Section 5.1 we will present L., x-definitions of the ramification ideal I¢ for
the defectless wildly ramified case.

1.5. Predescribed associated convex subgroups. For Galois defect extensions
€ = (L|K,v) of prime degree, we have already defined in Section 1.2 the valuation
rings Og¢. They correspond to convex subgroups of vL via the definition

He = v0; = vO0¢ N —0v0; .

Since the extension £ is immediate, Hg is a convex subgroup of both vK and vL.
Using this definition, we can modify the original definition for independent defect
given in [16] in the following way: £ has independent defect if

(7) Ye¢ = {a€vK |a> He} and vK/Hg has no smallest positive element;

otherwise we will say that £ has dependent defect. If (K, v) has rank 1 (i.e.,
its value group is order isomorphic to a subgroup of R), then condition (7) just
means that X¢ consists of all positive elements in vK. In the case of independent
defect, we will call He the convex subgroup associated with £. In order not
to overload our sentences, we will write “associated convex subgroup” for “convex
subgroup associated with a Galois defect extension of prime degree”.

For an ordered abelian group I', denote by C(I") the chain of its proper convex
subgroups, and by C,,(I") the chain of its proper principal convex subgroups. If H
is a convex subgroup of I' that is the smallest among all convex subgroups that
contain a given element v € I', then we call it a principal convex subgroup,
and if it is largest among all convex subgroups that do not contain a given element
v € I', then we call it a subprincipal convex subgroup. A subprincipal convex
subgroup may or may not be principal. In Section 6 we will prove:

Theorem 1.4. Let p be a prime and take any totally ordered set I. Then there
exists an ordered abelian group I' with Co(I') order isomorphic to I such that for
any subset C* C C containing only subprincipal convex subgroups, the following
statements hold.

1) There exists a perfect henselian valued field of characteristic p with value group
[' for which the associated convex subgroups are exactly the elements of C*P.

2) Assume in addition that ' has a largest proper conver subgroup. Then there
exists a henselian deeply ramified field of characteristic 0 and residue characteristic
p with value group I' for which the associated convexr subgroups are exactly the
elements of CP.

In an ordered abelian group with only finitely many proper convex subgroups,
each of them is subprincipal. Therefore, the next result follows immediately from
our theorem:

Corollary 1.5. Let p be a prime and take any finite totally ordered set I. Then
there exists an ordered abelian group I' with Cp,(I') order isomorphic to I such that
for any set H of proper convex subgroups of I, there exists a perfect henselian valued
field of characteristic p as well as a henselian deeply ramified field of characteristic
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0 and residue characteristic p with value group I" for which the associated convez
subgroups are exactly the elements of H.

2. PRELIMINARIES

2.1. Notation. For a valued field (K,v), we denote the value group by vK, the
residue field by Kwv, the valuation ring by Ok , and its maximal ideal by My . We
set VK70 :={a € vK | @ > 0} and vK< := {a € vK | @ < 0}. Throughout, we
will use the convention that v0 = oo > « for all & € vK.

By (L|K,v) we denote a field extension L|K with a valuation v on L, where K
is endowed with the restriction of v. In this case, there are induced embeddings of
vK in vL and of Kv in Lv. The extension (L|K,v) is called immediate if these
embeddings are onto. In this case, if z € L\ K, then v(z — K) has no maximal
element, and therefore z is an immediate element of (L|K,v); this follows from [13,
Lemma 2.9 2)] and the fact that each subextension of an immediate extension is
immediate.

We call (L|K,v) unibranched if the valuation v has only one extension from K
to L. A valued field is henselian if and only if all of its algebraic extensions are
unibranched.

If (L|K,v) is a finite unibranched extension, then by the Lemma of Ostrowski
([18, Corollary to Theorem 25, Section G, p. 78]),

(8) [L:K] =p" (vl :vK)[Lv: Kv],

where v is a non-negative integer and p the characteristic exponent of Kv, that
is, p = char Kv if it is positive and p = 1 otherwise. The factor d(L|K,v) := p”
is the defect of the extension (L|K,v). If d(L|K,v) = 1, then the extension
(L|K,v) is called defectless; otherwise we call it a defect extension. A henselian
field (K, v) is a defectless field if every finite unibranched extension of (K, v) is
defectless; note that this is always the case if char Kv = 0.

2.2. Ramification ideals. If L|K is Galois, then we denote its Galois group by
Gal L|K. In this case, a nontrivial Op-ideal contained in M is called a ramifi-
cation ideal of (L|K,v) if it is of the form

(9) (Ub_b\oeH,beLX>

b

for some subgroup H of Gal L| K. For more information on ramification ideals, see

14].

2.3. Kahler differentials. Assume that A is a ring and B is an A-algebra. Then
Q4 denotes the module of relative differentials (Kéhler differentials), that is, the
B-module for which there is a universal derivation

d: B — QB\A

such that for every B-module M and derivation  : B — M there is a unique
B-module homomorphism

¢2 QB|A — M
such that 6 = ¢ o d.
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2.4. Invariance group and invariance valuation ring.
Take any valued field (L,v) and Op-ideal I. We set

(10)  O() = {beL|bICI} and M(I) = {beL|bICI}.
We call O(!) the invariance valuation ring of I. The following is part of [17,

Theorem 3.6]:

Proposition 2.1. For every Op-ideal I, O(I) is a valuation ring of L containing
Oy , with maximal ideal M(I), which is a prime Op-ideal. It is the largest of all
valuation rings O of L containing Oy, for which I is an O-ideal.

If the ideal I is definable in an expansion £ of L., then also O(I) and M(I)
are L-definable:
(11) O) = {beL|Veel: bcel},
(12) M) == {beO)|Ja€IVecel: bc+#a}.

For a subset M of an ordered abelian group I', we define its invariance group
to be
GM) :={yel'|M+~vy=M}.
This is a subgroup of I', and it is a convex subgroup if M is convex (which in
particular is the case if M is an initial or a final segment of I'). If S is a final
segment of I' and v € I', then v+ S :={y+a|a € S} and =S :={-a | a € S}
are again final segments of I' with

(13) G(y+5) = G(5) = G(=9).
For these facts and more information on invariance groups, see [17, Section 2.4]
and [12].
For every coarsening O of Op , we set
H(O) = vON—v0 = vO*.

This is a convex subgroup of the value group vL of (L,v). If M is the maximal
ideal of O, then

(14) oM = {aevl|a>v0"} = {ac€vl|a>H(O)}.
The valuation w associated with O is (up to equivalence) given by
(15) wa = va/H(O)

for every a € K, the value group of w is canonically isomorphic to vK/H(O), and
the value group of the valuation induced by v on the residue field Kw is canonically
isomorphic to H(O) (cf. [18]). The function O — H(O) sends every coarsening
O of Op, to a convex subgroup of vL. Its inverse is given by sending a convex
subgroup H of vL to

(16) OH) ={beK|3Jae H: a<uvb}.
We call this the coarsening of O, associated with H.
Further, for every O,-ideal I we define
H(I) := HO)).
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By [17, Theorem 3.6 3)],

(17) H(I) = H(O(I)) = G(vI)
and
(18) O(I) = O(G(vl)) = O(H(I)).

The next result is part of [17, Lemma 3.5].
Lemma 2.2. For every coarsening O of O with maximal ideal M,
(19) H(O) = G(vO) = G(vM).
We leave the straightforward proof of the following result to the reader.

Lemma 2.3. If I is an Op-ideal and J = al with 0 # a € L, then O(J) = O(I),
M(J) = M(I) and H(J) = H(I).

3. IMMEDIATE ELEMENTS IN ARBITRARY VALUED FIELD EXTENSIONS

Take any valued field extension (L|K,v) and z € L\ K an immediate element in
(L|K,v), that is, the set v(z — K) has no maximal element and is an initial segment
of vK. We define

(20) I..xx = (beK|vbe—v(z—K)}
and
(21) I.x =((bel|3ceK:vb>—-v(z—0)}.

If v(z — K) = vK, then I,_g.x = K. If v(z — K) is bounded from above, then
—v(z — K) is bounded from below and therefore, I, .k is a fractional Og-ideal
and I,_k is a fractional Og-ideal. We set O,_k.x := O(I,_k.x) (taken in (K,v)),
and denote its maximal ideal by M,_k.x . Likewise, we set O, i = O(l,_k)
(taken in (L,v)), and denote its maximal ideal by M,_x . We see that by (21),
I._k is definable in L in the language Ly, x with parameter z. Hence by (11)
and (12), also the invariance valuation ring O,_k and its maximal ideal M,_f are
La1 k-definable in L with parameter z.

Since z is not a parameter in K, we may in general not have an elementary
definition of O,_k .k and I,_ .k in (K,v). For example, we have not even excluded
the case that z is transcendental over K. On the other hand, if z is algebraic over
K with a suitable minimal polynomial, then the situation may change, as we will
see in Sections 4.1 and 4.2.

Now we define

(22) H, kK = H(OZ—K;K) = H(O(IZ—K;K)>
and
(23) H, kg = H(O, k) = HO(l.-k)) -

By (17) and (13),
H. i = G0l kx) = G(—u(z— K)) = Go(z — K)).
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We observe that H,_ .k is a proper convex subgroup of vK if and only if v(z — K)
is bounded from above, and that this holds if and only if z does not lie in the
completion of (K, v). If H,_ .k is not a proper convex subgroup, that is, H,_g.x =
vK, then O,_k.x = K, i.e., the corresponding valuation is trivial. Otherwise, this
coarsening of Ok is nontrivial.

Now assume in addition that the extension (L|K,v) is immediate. Then as
mentioned in Section 2.1, every z € L\ K is an immediate element in (L|K,v), and
v(z — K) is an initial segment of vL = vK. In this case, H, k. is also a convex
subgroup in vL, and moreover,

v, xk ={a€cvl|3ceK: a>—-v(z—0c)} = —v(z—K) = vl,_gx .
Using this together with (17), we obtain:

H, x = HO(I,-k)) = Gwl._k) = Gl,_xr) = HO(,—xkx)) = H.—k.x -

4. DEFECT EXTENSIONS OF PRIME DEGREE

Take a Galois defect extension €& = (L| K, v) of prime degree p. We set
By Lemma 2.2, H¢ is the invariance group of vOg¢ and of uM¢ . By (17), Lemma 2.2
and the definition of I,
(24) Hg = g(v]g) = g(Zg) = g(UOg) = g(UMg) .
Theorem 4.1. For every Galois defect extension € = (L|K,v) of prime degree p,
the following statements hold.

1) The set ¥, is a final segment of vK~° and independent of the choice of a
generator o of Gal L| K.

2) For every a € L'\ K and every generator o of Gal L| K,

(25) Ye = —v(a— K)+v(ca—a)

and

(26) I¢ = (ca—a)l, g, He = Hy i, O = O, g, and Mg = M, k.
3) For everya € L\ K,

(27) He = G(v(a - K)) = G(—v(a—K)).

Proof. 1): By [16, Theorem 3.5], ¥, is independent of the choice of a generator o
of Gal L|K'; so we denote it by ¥g. By [16, Theorem 3.4], ¥¢ is a final segment
of vK>° Note that vK>% = vL>° since vK = vL, as the extension (L|K,v) is
immediate.

2): Equation (25) is part of [16, Theorem 3.4]. It implies Equation (26) by way of
the definitions of I¢ and I,_k, and Lemma 2.3.

3): From (24) we know that Hg is equal to G(X¢), and by (25) this is equal
to G(—v(a — K) + v(ca — a)). Since —v(a — K) + v(ca — a) is a final segment
of vK by part 1) of our theorem and « := v(ca — a) € vL, we can infer from
equation (13) that G(—v(a — K) + v(ca — a)) = G(—v(a — K)). Finally, the
equality G(v(a — K)) = G(—v(a — K)) follows from [17, Lemma 2.12 3)]. O
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Based on part 2) of this theorem, we can now give the

Proof of part 1) of Proposition 1.1:

We have Og = O(IQ_K) = {b €L | bl,_x C IQ_K} = {b €L ’ Vee K 3d € K :
vb(a —¢) = v(a — )} U {0}, where we use that v(a — K) is a final segment of v L.
Since O(I,_k) does not depend on the choice of a € L\ K, O¢ has the following
parameter free definitions in the language Ly, k :

(28) O¢ = {beL|Vee L\KVece K3 € K: vb(x —c)=v(x— )} U{0},

and the quantifier “Vz € L\ K” can also be replaced by “Jz € L\ K”. Further,
Meg={be L|bl, x C I, i} has the following parameter free definition in the
language Lya x :

(29) Mg ={beL|beOgNTce KV € K: vb(x —c) #v(x—)}.

Let us show that our definitions (4) and (7) of independent defect are equivalent.
By definition of Ig we have Yg¢ = vlg. By (14), vMe ={a € vK | a > H(O¢)} =
{a € vK | @ > Hg}. Hence (7) reads as vlg = vMg. Since the function M +—
vM := {va | a € M} that sends every Or-module M C L to a corresponding final
segment in v is bijective, the latter equality is equivalent to the equality I = Mg .
Further, as vK/Hg is the value group of Og¢, vK/Hg having no smallest positive
element is equivalent to Mg being a nonprincipal O¢-module.

Finally, we show that (7) is equivalent to the condition (6) in the original defini-
tion of independent defect in [16]. It is obvious that (7) implies the latter. For the
converse, assume that Y¢ = {a € vK | @« > H} for some proper convex subgroup
H of vL such that vL/H has no smallest positive element. Then by [17, Lemma
2.13 5)], H is the invariance group of ¥¢, hence by (24), it is equal to Hg .

While we have given elementary definitions of O¢ and Mg, the problem with
doing the same for I¢ is that we may not have enough information on the factor
ca — a. We will now show that this changes when we know that the extension is
an Artin-Schreier or a Kummer extension of prime degree. We will thereby prove
part 2) of Proposition 1.1.

4.1. The equal characteristic case. Let us first discuss the case where (K, v)
is of equal positive characteristic, that is, char K = char Kv = p > 0. Then
every Galois defect extension £ = (L|K,v) of prime degree p is an Artin-Schreier
extension, that is, generated by an Artin-Schreier generator € L\ K with
VP — 1 € K. By [16, Theorem 3.5],

(30) Se = —v(d - K) .
for every such 9. Further, v(cv — ) = 0, hence
Ie = Iy_x ={beLl|Jce K: vb>—v(V—c)}

in this case. Equation (30) shows that the set v(¢ — K) does not depend on the
choice of the Artin-Schreier generator of L| K, hence I¢ has the following parameter
free definitions in the language Ly, k :

(31) I ={bel|Fxe L\KIceK: a2’ -z e K Nvb>—-v()—c)}



10 FRANZ-VIKTOR KUHLMANN

and

32) Ig={bel|VeelL\K3ceK:2"P—2x€K — vb>—-v(¥—c)}.

Now assume that £ has independent defect with associated convex subgroup He .
By [2, Theorem 1.7], this holds if and only if

(33) V(P =9 — p(K)) = {a € pvK | o < He}.

Since vL/Hg has no smallest positive element, equation (33) is equivalent to
(34) He = {fevK|p>v( -1 —p(K))and — > v -9 — p(K))}.
In other words,

(35) He = {£fevK |Vee K v’ -9 —P+¢) < <0}.

The convex subgroup Hg gives rise to an L, -definition of the coarsening Og.x =
O(Hg) ={be K | Ja € He : o < vb} (taken in K) of the valuation ring O ,
namely

(36) Ocx = {be K |Vee K:v(W —19—c +c) <uvb},

whose value group is vK/Hg .

For our applications, we are more interested in the coarsening of O, correspond-
ing to He. By (16),

(37) O = O(Hg) = {beL|3Ja€ He: a <wb}.

By the definition of independent defect combined with Equation (30), if £ has
independent defect with associated convex subgroup Hg , then

(38) v —K) = {a€vK |a< Hg}.

Since this does not depend on the choice of the Artin-Schreier generator of L|K,
O¢ has the following parameter free definitions in the language L. x :

(39) O ={bel|VreL\K VeeK: 2’ —zx € K — v(x —c) <uvb}
and
(40) O ={beL|Fxe L\K Vee K: 2P —x € K N v(x—c) <uvb}.

Also the maximal ideal Mg of O¢ has a parameter free definition in the language
Lval,K:

(41) Mg ={belL|Fr e L\K3ceK: a? —x € K N —v(x —c) < wvb}.
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4.2. The mixed characteristic case. Now we discuss the case where (K, v) is
of mixed characteristic, that is, char K = 0 and char Kv = p > 0. We assume
in addition that K contains a primitive p-th root of unity (,. Then every Galois
defect extension &€ = (L|K,v) of prime degree p is a Kummer extension, that
is, generated by a Kummer generator n € L\ K with n? € K. Then by [16,
Theorem 3.5] and [16, Lemma 2.5],

(12) Se = 0(G = 1) = vl = K) = ——up =0y~ K)

for every such 7. Further, on —n = (, — 1 for suitable (,, hence

! VP~ v(d—c)}

I = (Cp—l)]g_[{ = {b€L|E|C€KZ vb >

in this case. Similarly as in the equal characteristic case, Iz has the following
parameter free definitions in the language Lya k :

(43) I = {beL|FIr e L\K3Ice K: 2! —z € K Nvb>

! 1vp—v(x—c)}

and

1
440) Ie = {be L |Vr e L\K dce K : 2’ -z € K — vb > vp—v(x—c)}.
1

Now assume that £ has independent defect with associated convex subgroup He .
By [2, Theorem 1.7], this holds if and only if

(45) v — KP) = v(( — 1) +{a e pvK | a < He}.
Similarly as in the equal characteristic case, we obtain that
(46) He = {5 € vK |Vee K :v(nP — P) — plvp<ﬁ§0},

and we have the L,,-definition

(47) Ocr = {beK|Vee K v —c)—

b 11}p<vb}.

Note that for this definition and definition (36) it is not needed that (K,v) be
henselian, and that in fact, they will be applied to deeply ramified fields, which are
not required to be henselian. For the case of henselian fields (K, v), these definitions
are used in [6, Theorem 4.11] to define corresponding henselian valuations on K
that are definable in the language of rings.

By the definition of independent defect combined with Equation (42), if £ has
independent defect with associated convex subgroup Hg, then

(48) v(W—K)—v((—1) = {aevK |a< Heg}.

Hence in this case, using again (37) together with the fact that equation (48) is
independent of the choice of n € L\ K satisfying n? € K), we can give the following
parameter free L, g-definitions of Og:

Ofg ={bel | Yxe L\K Vee K: (a? € K Nv(x—1) >0)

— v(r—c)—

1
VP < vb}



12 FRANZ-VIKTOR KUHLMANN

and

O ={bel | JzrelL\K: 2’ K ANv(x—1)>0

1
TP < vb} .

AVee K :v(x —c) —

Also the maximal ideal of O¢ admits a parameterfree L., r-definition:

Mg ={bel | xel\K:2Pe K ANv(zx—1)>0

1
ANdce K: —v(x—c)+ 1vp§vb}.

4.3. Properties and applications of Iz, O and Mg. We keep our assumption
that £ = (L|K,v) is a Galois defect extension of prime degree p.

Equations (31), (32), (43) and (44) prove part 2) of Theorem 1.1.

The following facts are proven in [2]. Part 1) follows directly from our definition
Os = O(I¢) in the introduction together with Proposition 2.1 which implies the
assertion. However, in [2], under the additional assumption that K contains a
primitive p-th root of unity if char K = 0, O¢ is defined in a different way, and our
assertion is part of [2, Theorem 1.4], as is part 2).

Proposition 4.2. Take a Galois extension € = (L|K,v) of prime degree p with
independent defect.

1) The ideal Mg is equal to the ramification ideal I¢, and Og is the largest of all
coarsenings O' of Op, such that I¢ is an O'-ideal.

2) If char K = 0, then assume in addition that K contains a primitive p-th root
of unity. Then the trace Tr pjx (M) is equal to Mg N K.

The valuation ring Og¢ is of interest for the computation of the annihilator of
Qo,10x- The annihilator of an Or-module M is the largest among all O-ideals J
for which JM = {0}; we denote it by ann M. From [2, Theorem 1.4] we know that

Q(9L|OK = Ig/];j?

which is zero if and only if £ has independent defect; in this case, ann Qp, |0, = Or, .
For the case of dependent defect, we infer from [2, Proposition 4.7 2)], denoting by
ve the valuation on L having valuation ring Og :

Proposition 4.3. If there is a € K such that vgfg_l has infimum vea in ve L but
does not contain this infimum, then

(49) aanoL‘@K = CLO(Ig),

which properly contains Ig_l. In all other cases, ann o, |0, = ]g_l
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5. DEFECTLESS EXTENSIONS

We take an extension & = (L|K,v) of prime degree ¢, not necessarily equal to
char Kv. Then either [L : K| = (vL : vK) or [L: K] = [Lv : Kv]. We will discuss
the more interesting case of [L : K| = (vL : vK), which we will assume throughout.

We define Hg to be the largest convex subgroup of vL which is also a convex
subgroup of vK; it exists since unions over arbitrary collections of convex sub-
groups are again convex subgroups. We take Og to be the coarsening O(Hg) of
O, associated with Hg so that its value group is vL/Hg , and denote its maximal
ideal by Mg .

The subgroup Hg defined here has important similarities with the convex sub-
group Hg defined in the defect case.

We distinguish three mutually exclusive cases describing how v K extends to vL;
for convenience, we use the notation of [3]:

(DL2a): there is no smallest convex subgroup of vL that properly contains Hy ;

(DL2b): there is a smallest convex subgroup Hg¢ of vL that properly contains He ,
and the archimedean quotient He/Hpg is dense;

(DL2c¢): there is a smallest convex subgroup H¢ of vL that properly contains Hp ,
and the archimedean quotient He/Hpg is discrete.

Our goal is to find an element = € L with vz ¢ vK such that
(50) Or = U Oklcx] .
ceK with vex>0
If ¢, € K with ve > v, then cx = 5z € Ok[c'z], hence Ok[cz] C Ok|c'].
Theorem 5.1. [3, Theorem 3.3] Take an extension € = (L|K,v) of prime degree

q = (vL : vK), with xog € L such that vry ¢ vK. Then quzy € vK, and the
following assertions hold.

1) If € is of type (DL2a) or (DL2b), then (50) holds for x = x .

2) If € is of type (DL2c), then (50) holds for x = x}) with suitable j € {1,...,q—1}.
If in addition He = {0}, then O = Oklcz] for suitable ¢ € K.

The assumption of part 1) holds in particular when every archimedean component
of vK s dense, and this in turn holds for every deeply ramified field (K, v).

With x as in this theorem, we have:
Proposition 5.2. [3, Proposition 3.4] The Op-ideal Mg is equal to the Op-ideal
(51) I, = (cx | c € K with vex > 0) .
Corollary 5.3. The set {vcz | ¢ € K with vex > 0} is coinitial in vK~"\ Hg .
Lemma 5.4. For every xo with vrg ¢ vK we have I, C I, .

Proof. Take ¢y € K such that vcoxrg > 0, so that cozg € O . If x is as in Theo-
rem 5.1, then there is ¢ € K such that cozg € Ok[cx]. Consequently, coxg € I .
This proves that I,, C I, . O
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From this lemma together with Proposition 5.2 we obtain the following parameter
free Lya k -definition of Mg:

(52) Mg ={beL|Fxel\K: Vye K:vx#vy)ANIc€ K : va > vcx > 0}.
From this, we can define O¢ by including the units of Og¢:
O = {be L|Vre Mg: —vx <uvb}.

5.1. The ramification ideal. Take a unibranched defectless Galois extension
€ = (L|K,v) of prime degree p = (vL : vK) = char Kv. We denote by I¢ the
ramification ideal of €. From [14, Theorem 3.15] we obtain:

Theorem 5.5. 1) If £ is an Artin-Schreier extension, then it admits an Artin-
Schreier generator ¥ of value v < 0 such that v ¢ vK. For every such ¥,

(53) I = (%) |

2) Let € be a Kummer extension. Then there are two cases:

a) & admits a Kummer generator n such that 0 < vn & vK. For every such n,
(54) Ie = (G, —1).

b) & admits a Kummer generator n such that n is a l-unit with v(¢, — 1) >
v(in—1) ¢ vK. For every such n,

(55) I = (ﬂ) |

n—1

Let us show that under the assumptions of the theorem, I¢ always has a pa-
rameter free L, k -definition. If £ is an Artin-Schreier extension, then we can
define

Ie  ={bel | Jzel: 2’ —xe€ K Nvx<0
ANy e K: ve#vy) AN vb>vx}.
If £ is a Kummer extension, then in case 2)a) of the theorem, we have vn > 0

and therefore, v(n—1) = 0. Thus, we can also in this case use (55) for the definition
of I¢:

I ={bel | 3xzeLl: 2P K Nvp>(p—1v(z—1)
ANVye K: 0<vr#ovyVO0<ov(zr—1)#ovy)
ANp—1vb>vp—(p—1v(x—1)}.
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5.2. Importance of the ideals I, O and M¢. We will now summarize the
results for defectless Galois extensions & = (L|K,v) which will demonstrate the
importance of the ideals Iz, Og¢ and Mg . If [L : K| = q # char K, then we will
assume that K contains a g-th root of unity.

Theorem 5.6. [3, Theorem 4.6] Take an Artin-Schreier extension € = (L|K,v) of
degree p = (vL : vK). Then

(56) Qoplox = IeMe/(IeMe)?
as Op-modules; in particular, Qo, |0, # 0.
The following is a reformulation of [3, Theorem 4.6].

Theorem 5.7. Let £ = (L|K,v) be a Kummer extension of prime degree q with

e(L|K)=q.
If q # char Kv, then
(57) Qoo = Me/ Mg

as Or-modules.
If ¢ = char Kv, then

(58) Qolox = IeMe/(IeMe)!

as Or,-modules.

In case 2)a) of Theorem 5.5, we have that Qo, 0, = 0 if and only if ¢ ¢ Mg
and Mg is a nonprincipal Og-ideal. The condition ¢ ¢ Mg always holds when
q # char Kv.

In case 2)b) of Theorem 5.5, we always have that Qo 0, # 0.

Let us compute the annihilators of €0, |0, in the above cases whenever it is
nonzero. The following is Poposition 3.21 of [17], adapted to our current notation.

Proposition 5.8. Taken > 2, a € O, and O a valuation ring containing Or, with
mazximal ideal M. Assume that (aM)™ # aM. Then the following statements
hold.

1) We have that

(aM)"1 if M is a principal O-ideal,
(aO)" ' =a"tO if M is a nonprincipal O-ideal.

2) The annihilator is equal to My, if and only if n =2, a ¢ My =M and My is
a principal O -ideal.

ann aM/(aM)" = {

Since I¢ is a principal Op-ideal, we can choose a € O, such that I = aOy, to
obtain that

Ig./\/lg = CLMg .
Now we apply Proposition 5.8.

Proposition 5.9. Let £ be an Artin-Schreier extension or a Kummer extension of
degree p = char Kv. Assume that [L : K] = (vL : vK) and that Qo, 0, # 0. Then

(aMg)Pt if Mg is a principal Og-ideal,

ann Qo o, = { (aOg)P~t = aP~1O0¢ if Mg is a nonprincipal Og-ideal.
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Further, annQo, |0, = My if and only if p = 2, a ¢ My = Mg and My is a
principal Op-ideal.

Let us note that if (DRvp) holds (and in particular, if (K, v) is a deeply ramified
field), then the maximal ideal of any coarsening of Oy, is never principal. In this
case, M, is never the annihilator of Qp, o,

In the case of a Kummer extension of prime degree ¢ = (vL : vK) # char Kv,
(57) holds, and we set a = 1. Then we obtain from Theorem 5.7 and Proposi-
tion 5.8:

Proposition 5.10. Let £ be a Kummer extension of degree ¢ = (vL : vK) #
char Kv. Assume that Qo, |0, is nonzero. Then Mg is a principal Og-ideal, and

— q—1
aanoL‘OK = Mg .

Further, ann Qo, |0, = My if and only iof ¢ =2 and Mg = M.

6. DEEPLY RAMIFIED FIELDS IN EQUAL CHARACTERISTIC WITH PRESCRIBED
ASSOCIATED CONVEX SUBGROUPS

6.1. Preliminaries from ramification theory. An algebraic extension (L|K,v)
of a henselian valued field (K, v) is called tame if every finite subextension K'|K
satisfies the following conditions:

(T1) the ramification index (vK’ : vK) is not divisible by char Kv,
(T2) the residue field extension K'v|Kwv is separable,
(T3) the extension (K'|K,v) is defectless.

A henselian valued field (K, v) is called a tame field if the algebraic closure K*
of K with the unique extension of v is a tame extension of (K,v). It follows
from conditions (T1)-(T3) that all tame fields are perfect defectless fields. For the
algebra and model theory of tame fields, see [11].

The ramification field of a Galois extension (L|K,v) with Galois group G =
Gal (L|K)) is the fixed field in L of the ramification group

ob—1b
b

When dealing with a valued field (K, v), we will tacitly assume v extended to its
algebraic closure. Then the absolute ramification field of (K, v) (with respect
to the chosen extension of v), denoted by (K", v), is the ramification field of the
Galois extension (K®P|K,v). If (K(a)|K,v) is finite and a defect extension, then
(K"(a)|K",v) is a defect extension with the same defect (see [16, Proposition 2.13]).
On the other hand, K*P|K" is a p-extension (see [4, Theorem (20.18)]), so every
finite extension of K" is a tower of purely inseparable extensions and Galois ex-
tensions of degree p. If (K,v) is henselian, then (K", v) is its unique maximal
tame extension (see [15, Proposition 4.1]). Hence the next fact follows from [16,
Proposition 2.13]:

(59) G" = {UGG‘ e My, forallbeLX}.

Lemma 6.1. If (K,v) is henselian, (K(a)|K,v) is finite and a defect extension,
and (L|K,v) is a tame extension, then d(L(a)|L,v) = d(K(a)|K,v).
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An extension (L, v) of a henselian field (K, v) is called purely wild if every finite
subextension (Lg|K,v) satisfies:

(a) (vLp : vK) is a power of the characteristic exponent of Kv,

(b) Lov|Kw is purely inseparable.

The extension (L,v) of (K, v) is purely wild if and only if it is linearly disjoint from
K" over K (see [15, Lemma 4.2]).

Lemma 6.2. Every maximal purely wild extension of a henselian field is a tame

field.

Proof. By [15, Theorem 4.3], every maximal purely wild extension W of a henselian
field (K, v) is a K-complement of K", that is, W N K" = K and W.K" = K*. By
[15, Lemma 2.1 (i)], there is also a W-complement W’ of W". Again by [15,
Theorem 4.3], W’ is a maximal purely wild extension of W. By the maximality of
W, we must have W/ = W. Hence K2 = W’'.W" = W", which shows that W is a
tame field. O

6.2. Technical preliminaries. For the following result, see [1, Lemma 4.1] (cf.
also [8, Lemma 2.21]):

Lemma 6.3. Assume that (K(a)|K,v) is a unibranched extension of prime degree
such that v(a — K) has no maximal element. Then the extension (K(a)|K,v) is
immediate and hence a defect extension.

Lemma 6.4. 1) Let (Ko,v) be a valued field of characteristic p > 0 whose value
group is not p-divisible. Take a € Ky such that va < 0 is not divisible by p. Let 9
be a root of the Artin-Schreier polynomial X? — X —a. Then (Ké/poo(ﬁﬂKé/poo, v)
is a defect extension with independent defect, and v(¥ — Ké/poo) C (vKé/poo)<0.

2) Take a perfect field k of characteristic p > 0 and Ky to be k(t), k(t)" or k((t)),
equipped with the t-adic valuation v = v,. Let 9 be a root of the Artin—Schreier
polynomial XP — X — 1/t. Then the assertion of part 1) holds, and

v(z? B Ké/p“) _ (UKé/p‘x’)<0_

Proof. 1): We have that v¢ = va/p and [Ky(?) : Ko] = p = (vKo(0) : vKy). The
Fundamental Inequality (cf. (17.5) of [4] or Theorem 19 on p. 55 of [18] shows that
Ko(9)v = Kov and that the extension (K(¢)|Ko,v) is unibranched. The further
extension of v to the perfect hull

Ko(0)!/7™ = Ky/"™ (0)
is unique, as the extension is purely inseparable. It follows that also the extension
(KYP™ (9)| K3 ,v) is unibranched. On the other hand, [K2/"™ (9) : KJ/""] = p
since the separable extension Ky(1)|Kj is linearly disjoint from Ké/ "|Ko. The
value group vKo/"" (9) = vKo(9)Y?™ is the p-divisible hull of vKy(d) = vKy +
Zvy. Since pvY € vK, this is the same as the p-divisible hull of vKy, which
in turn is equal to vKé/poo. The residue field of Ké/poo (9) is the perfect hull of
Ko(¥)v = Kov. Hence it is equal to the residue field of Ké/poo. It follows that
the extension (Ké/poo(ﬁﬂKé/pw, v) is immediate and that its defect is p, equal to
its degree. Since KS/ P7 s perfect, it is deeply ramified and hence according to
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[16, part (1) of Theorem 1.10] the extension must have independent defect. The
inclusion v(d¥ — Ké/pw) C (vK)<? follows from [8, Corollary 2.30].

2): In all three cases we have that Ké/poo — Ko(t'/?" | k € N). For the partial sums

k

(60) b =y e KT
=1

we have

k—1 k
=0 i=1

S0 )
U(ﬁ—bk) = —F < 0.
Suppose that there is ¢ € K/ such that v(9 — ¢) > —1/p* for all k. Then
v(c—bg) = min{v(d —c),v(9 — by)} = —1/p**! for all k. On the other hand, there
is some k such that ¢ € Ko(t~'/7 ... ¢71/7") = Ky(+~'/*"). But this contradicts
the fact that v(c — ¢t~ — .. — 712" = y(c — by) = —1/pFtt & vK,(t~1/7").
As (¥ — Ké/poo) C (UKS/pOO)<O by part 1), this proves that the values —1/pF
are cofinal in v(¥ — K/*"). Since vKy/*" is a subgroup of the rationals, this
shows that the least upper bound of v(9 — K/’ ) in vK,/*" is the element 0. As
v(9— K37 is an initial segment of vK/™" by [8, Lemma 2.19], we conclude that
v — KJP7) = (vKPT) <0, O

When we take Ky = F,((¢)) in part 1) of this lemma, where F, is the field with
p elements, and a = 1/t, we obtain “Abhyankar’s Example”, see [9, Example 3.12].

Lemma 6.5. Take a valued field (K,v) of characteristic p > 0, a decomposition
v=wow, and an Artin-Schreier extension of K with Artin-Schreier generator 9.
Then the following assertions hold.

1) (K(9)|K,v) is a defect extension withv(V—K) = {a € vK(¥) | a < w(K(9)w)}
if and only if (K(9)|K,w) is a defect extension with w(¥ — K) = (wK (9))<°.

2) If w9 = 0 and w(Vw — Kw) = (0(K(9)w))<0, then (K(9)|K,v) is a defect
extension with v(¥ — K) = (vK (9))<°.

Proof. 1): We can write wK (¢) = vK () /w(K (9)w) and wa = va+ w(K (¥)w) for
each a € K (). This implies that v(¢¥ — K) = {a € vK | a < w(K(J)w) if and
only if w(¥ — K) = (wK(9))<". By Lemma 6.3, (K (9)|K,v) is a defect extension
if v(¥ — K) is a subset of vK (1) without maximal element, and similarly for w in
place of v. This fact together with the equivalence we have already shown proves
the assertion of our lemma.

2): Our assumption implies that v(d — K) C (vK(9))<? since if there is ¢ € K
such that v(d — ¢) > 0, then ve = v¥, so we = wd = 0, and W(Yw — cw) > 0.
On the other hand, w(Kw) is a convex subgroup of vK, so (w(Kw))<" and thus
also w(Yw — Kw) is cofinal in vK<°. Since for every b € Kw there is ¢ € K with
cw =b and v(J — ¢) = W(Yw — cw), it follows that v(J — K) = (vK(9))<°. Again
by Lemma 6.3, (K(9)|K,v) is a defect extension. O
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Proposition 6.6. Take any perfect field K of characteristic p > 0 and a field
Ly of characteristic 0 carrying a p-adic valuation v, such that v,Ly = Zvyp and
Liv, = K. Set ap := p and by induction, choose elements a; in the algebraic closure
L3¢ of Ly such that af = a;_y for i € N, and set

LQ = Ll(al|2€N)

Further, take a € Q* C L5 such that

1
(61) a —a = —.

p
Then the following assertions hold.
1) There is a unique extension of the valuation v, to Ls.
2) (La,vp) is a deeply ramified field with value group v,Ly = [,%vap and residue
field Lyv, = K.
3) (La(a)|La, v,) is a defect extension of degree p.
4) Assume that T3¢ C K and there is Lo C Ly such that (Lo, vp) is henselian with
Lov, = 3¢, Then there is a finite extension (L|La,vy) such that Lv, = Lyv, = K,
(L,vp) is a deeply ramified field, and (L(a)|L,v,) is a Galois defect extension of
degree p with independent defect and associated convexr subgroup {0}.

Proof. By our choice of the a; , %p = v,a; € vpL1(a;). Therefore,

pt < (vpLa(a;) s vpLly) < (vpLi(a;) : vpL1)[L1(a;)v, : Livy] < [Li(a;) @ L] < P

Hence equality holds everywhere, and [L;(a;)v, : L1v,] = 1. We thus obtain that
vl (a;) = I%vle and Ly (a;)v, = Lyv,. Consequently,

1
vpLy = vaLl(a,-) = —Z and Lyv, = Liv, = K,
ieN P
and the extension (Ls|Lq,v,) is unibranched, which proves assertion 1). We see
that v, L, is p-divisible, so (Ls,v,) satisfies (DRvg). In order to show that (Lo, v,)

is a deeply ramified field it remains to show that it satisfies (DRvr).
Take b € Op,. Then b € Ly(a;) for some i € N and we can write

p’-1
— )
b = E c;a;
=0

with ¢; € L; . Since the values vpag , 0 < j < p'—1lie in distinct cosets modulo v,L;
(hence the elements a], 0 < j < p' — 1 form a valuation basis of (Li(a;)|L1,vy)),
we have that v,b = ming<;<,i_1 vpc;al. As b € Oy, , it follows that ¢;a] € Oy, for

all . We observe that Upag < B ;7lvpp < UpDp, SO Vpc; € Zupp cannot be negative.
This shows that ¢; € O, for all j.

For every ¢ € Oy, there is d € O, such that ¢ = d? mod pOy, ; indeed, as K
is perfect, there is § € K such that cv, = &P, so we can choose d € Oy, such that
dv, = £. Then we obtain v,(c — d) > v,p.
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For each j we now choose d; € L; such that ¢; = d? mod pOy, . Then

pi—1 P pi—1 pi—1
E a’ = § : PP ) = ) =

djaiyy | = dj(a; ) = E ccja; = b mod pOr, () -
J=0 j=0 §=0

In view of [16, Lemma 4.1 (2)], this shows that (K, v,) satisfies (DRvr) and is
therefore a deeply ramified field, which proves assertion 2).

Our next aim is to show that the extension (Ls(a)|Ls,v,) is nontrivial and im-
mediate. For each i € N, we set
1
bi == Z— S Ll((li)

a
j=1 "

and compute, using [16, Lemma 2.17 (2)]:

1 1
a—b) —(a—b) = a’— — —a+ —
p
j:laj ]:1aj
i—1 %
1 1 1 1 1
_ 1t 5t S =2 mod Op

It follows that v,(a — b;) < 0 and

1
WP v,— = min{pv,(a — b;),v,(a — b;)} = pv,(a—b;),
P’ a;

whence
(62) vp(a —b;) = —

Upp
pi+1 ’

We have that
p < (v,Li(a;,a):vyLi(a;)) < (vpLli(as,a):v,Lyi(a;))[Li(a;,a)v, : Ly(a;)vp)
< [Ll(ai,a) : Ll] S D .

Thus equality holds everywhere and we have that (v,Li(a;,a) @ v,Li(a;)) = p,
the extension is unibranched, L;(a;,a)v, = Li(a;)v, = Liv,, and for all i € N,
a ¢ Ly(a;). Hence a ¢ Lo, and we have:

vpLa(a vaLl a;,a) = p%oZ = v,Ly and Ly(a)v, = Liv, = Lov,.
ieN
This shows that (La(a)|Le, v,) is nontrivial and immediate, as asserted. The exten-
sion is also unibranched since each extension (L;(a;,a)|L;(a;),v,) is unibranched.
Therefore, it is a defect extension of degree p, which proves assertion 3).

Since [Lg(a) : Lo] = p, there is an element ¢’ € L3 such that [Ly((’) : Lo] divides
(p — 1)l and Lo(a, ()| Lo(¢") is Galois. As (Lg,v,) is henselian, p does not divide
[Lo(¢) - LO] and Lov, is algebraically closed, the Lemma of Ostrowskl shows that
[Lo(¢') : Lo] = (vpLo(C¢") = vyLo). It follows that also [Li(¢') : Li] = (vp,L1({') -
vp,Ly), and that (L1(¢")|L1,v,) is a tame extension. Hence by Lemma 6.1, also
(L1(a, ¢")|L1(¢"), vp) is a defect extension. By [16, Theorem 1.5], the algebraic ex-
tension (L1(¢’),v,) of (L1, v,) is again a deeply ramified field and hence an rdr field.
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Thus it follows from Theorem 1.2 that the Galois extension (L;(a, (")|L1({"), vp) has
independent defect. Since (Lo, v,) has rank 1, the convex subgroup associated with
the extension (Lo(¢’,a)|L2(C'),v,) is {0}. With L := Ly({’), we have now proved
assertion 4). O

6.3. The case of equal characteristic: some examples.

Example 6.7. Take K, = F,((¢)). Then K := K7 = F,((1))/P™ is a perfect
field, so under the canonical t-adic valuation v, it is a deeply ramified field. More-
over, (K, v;) is henselian and of rank 1. Now set Ly := K((z)) and L := L(l)/poo, and
equip L with the canonical z-adic valuation v, . Both v, and v; are henselian, hence
so is their composition v := v, 0v; on L. As L is perfect, (L, v) is a deeply ramified
field. Its value group vL has rank 2, i.e., it has two proper convex subgroups. Let
¥ be a root of XP — X — %, and v, a root of XP — X — % We note that K = Lv,.

By part 1) of Lemma 6.4, both extensions (L(V,)|L,v) and (L(9,)|L,v,) are
defect extensions with independent defect. By part 2) of Lemma 6.4, v,(J, — L) =
v, L%, which by part 1) of Lemma 6.5 implies that v(J,—L) = {a € vL | @ < v; K }.
Hence for &, = (L(9,)|L,v), its associated convex subgroup Hg, is the convex
subgroup v, K of vL.

Again by part 1) of Lemma 6.4, the extension (K (¢;)|K,v;) has independent
defect, and by part 2) of Lemma 6.4, v;(J; — K) = v, K<°. By part 2) of Lemma 6.5,
(L(9;)|L,v) is a defect extension with v(d; — L) = (vL(¥;)<°. Therefore, {0} is the
convex subgroup associated with the defect extension (L(9)|L,v).

We have shown that both convex subgroups of vL, v, K and {0}, appear as the
convex subgroups associated with Galois defect extensions of (L, v). &

Let us present a modification of this example.

Example 6.8. In the previous example, we replace K by some algebraically closed
(or just henselian defectless) field with an arbitrary nontrivial valuation v;. Then
(K, v;) has no defect extensions, and H = v, K will be the only convex subgroup
of vL associated with Galois defect extensions. This is seen as follows. As in
Example 6.7 we have that (L(¢,)|L,v) is a defect extension with v(dJ, — L) =
{a € vL | a < v, K}. On the other hand, suppose that there is a defect extension
(L(9)|L,v) with v(¥ — L) = vL<C. Then there is b € L such that v(J — b) € ;K.
Set ¥ := (¥ — b)v, . Since ¥ — b is a root of an Artin-Schreier polynomial over L,
¥ is a oot of an Artin-Schreier polynomial over K. By construction, (K (9)|K,v,)
cannot be a defect extension, so there is ¢ € K such that vt(ﬁ — ¢) is the maximum
of v;(¥ — K). Choose ¢ € L such that cv, = & Then v(9 — b — ¢) is the maximum
of v(¥ — L), contradicting our assumption that (L(J)|L,v) is a defect extension.

At the other extreme, we can keep (K, v;) and (L, v,) as in the previous example,
but now take (L, v,) to be a maximal purely wild extension of (Lg, v,). As Lov, = K
is perfect, we have Lv, = Lov, = K. By Lemma 6.2, (L, v,) is a tame field and
thus has no defect extensions. Therefore v, K cannot appear as a convex subgroup
associated with any Galois defect extension; indeed, if v(¥ — L) = {a € vL | a <
v K}, then by part 1) of Lemma 6.5, (L(9)|L,v,) would be a defect extension.
However, as in the previous example one shows that & = (L(9;)|L,v) is a defect
extension with He, = {0}. &
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6.4. The case of equal characteristic: a general construction. We will now
present a much more general construction. Given any ordered index set I and
for every ¢ € I an arbitrary ordered abelian group C;, we can form the Hahn
sum [[,.;C;. As an abelian group, this is the direct sum of the groups Cj,
represented as the set of all tuples («;);e; with only finitely many of the o; € C;
nonzero. An ordering on [[,.; C; is introduced as follows. For (a;)icr € [[,c; Ci,
set imin := min{i € I | a; # 0}. Then define («;)ie; > 0 if oy > 0. If all C; are
archimedean ordered, then the principal convex subgroups are exactly the subsets of
the form {(a;)ier € [1;c; Ci | @i = 0 for all @ < iy} for some 4 € I; this subgroup is
generated by any (;)ier € [[;c; Ci with a;, # 0; likewise, the subprincipal convex
subgroups are exactly the subsets of the form {(a;)ier € [[,c;Ci | a; = 0 for all i <
ip} for some ig € I.

Now take any ordered index set I. Set C; = Z for all I and let 'y be the Hahn
sum [[,.; C;. For each ¢ € I let 1, denote the element (o;)ie; With oy = 1 € Z
if i = ¢ and «a; = 0 otherwise. Now the elements 1, generate all principal convex
subgroups of I'y . Note that if £ < ¢/, then 1, > 1, , that is, 1, > nl, for all n € N.

Take a perfect field k of characteristic p > 0 and a set {t; | i € I} of elements
algebraically independent over k and define a valuation v on the field k(¢; | i € I) by
setting vt; = 1; for each i € I. Let (Ky,v) be the henselization of (k(t; |1 € I),v).

For each 7 € I there are:

el

e a decomposition v = v; o v; , where v; is the finest coarsening of v on Ky that is
trivial on ¢; and v; is the valuation induced by v on the residue field Kyv;, which
can be identified with k(¢; | i < j € I), and

e a decomposition v; = w; o w; , where w; is the t;-adic valuation on Kyv; and w;
is the valuation induced by v; on the residue field Kyv;w;, which can be identified
with k(t; |i < j € I).

Note that v; is strictly coarser than v; if j < 1.

We take K to be the perfect hull of K, that is, K; = k:(til/pn |ie I, neN). The
valuations v and v; , ¢ € I, have unique extensions to K, and vK; is the p-divisible
hull 5T of vK,. Further, Kjv; is the perfect hull k(tjl-/pn |1 <jel, neN)of
k(t; | i < j € I), so the valuations v; and w; have unique extensions to Kjv; and
the decompositions v = v; o v; again hold on K. Likewise, Kjv;w; is the perfect
hull k:(tjl./p" |i<jel,neN)of k(t;|i<j € I),so also the valuations v; have
unique extensions to Kjv;w; and the decompositions v; = w; o w; again hold on
K.

We set I' := vK; = p%,ofo and define H; to be the largest convex subgroup of
[' that does not contain 1;, that is, H; = w;(Kjv;w;). Consequently, the H; are
exactly all subprincipal convex subgroups of I'. The principal convex subgroups of
[' are exactly all smallest convex subgroups that contain 1; for some ¢ € I; they
are of the form o;(Kv;).

The next theorem proves part 1) of Theorem 1.4.

Theorem 6.9. Take any subset J C I. Then there exists an algebraic extension
(Ko, v) of (K1,v) which is a henselian deeply ramified field and such that the convex
subgroups associated with Galois defect extensions of prime degree of (Ko, v) are
exactly the convex subgroups H; with j € J.



DEFINABLE COARSENINGS OF VALUATION RINGS 23

Proof. Since (Ki,v) is henselian and perfect, each algebraic extension (K,v) of
(K1,v) is a henselian deeply ramified field.

For each 7 € I we let ¥, be a root of XP — X — % Since v; is trivial on ¢; , we can
identify ¥; with 9¥;v; . By part 1) of Lemma 6.4, (K1 (9;)|K1,v), (Kyv;(9;)| K1v;, 0;)
and (Kqv;(¥;)|Kyv;, w;) are defect extensions with independent defect. By con-
struction, Kjv; = Klviwi(tg/pn | n € N) = Kjvw;(t;)"/?”, where Kjvaw; is a
perfect field. Hence by part 2) of Lemma 6.4, w;(¥; — Kiv;) = (w;(Kyv;))<°,
which by part 1) of Lemma 6.5 implies that v;(¢; — Kjv;) = {a € u;(Kyv;) |
a < v(Kyvw;)} = {a € v;(Kyv;) | @« < H;}. We claim that this implies that
v(¥; — K1) = {a € vK; | @ < H;}, that is, H; is the convex subgroup associated
with the defect extension (K;(v;)|K7,v). For the proof of the claim, observe that
Kiv; C Ky and U|K1vi = ¥p; SO 77@(791 — Kﬂ)i) - U(ﬁz — Kl) We show that the
former is cofinal in the latter, which will prove our claim. Take any ¢ € K. If
ve < vy, then 0;9; = vd; > v(¥; — ¢). If ve > vi);, then we can write ¢ = cv; + ¢
with cv; € Kjv; and ¢ € K with v;d > 0. It follows that v¢’ > v;(K;v;) and con-
sequently, v¢’ > v;(¥; — cv;) and v(V; — ¢) = v;(9; — cv;) € U;(V; — Kyv;). Hence by
our construction, all H; for ¢ € I appear as the convex subgroups associated with
Galois defect extensions of (K7, v). We now have to find an algebraic extension of
(K1,v) which will admit exactly all H; fori € I'\ J.

Let (K3,v) be a maximal algebraic extension of (K;,v) for which vKy = vK;,
the above decompositions carry over to K5 for suitable extensions of the valuations
v;, Uiy Wy, Ui, and for all j € J, Kyv; = Koyvjw; (tj)l/poo. As Kyv;w; is perfect, being
an algebraic extension of the perfect field Kyv;w;, part 2) of Lemma 6.4 shows that
(Kavj(¥;)| Kav;, w;) is (still) a defect extension with w;(d; — Kav;) = (w;(Kav;))<C.
By part 2) of Lemma 6.5, (K2(¢;)|K2,v; o w;) is a defect extension with v; o
w;(¥; — Ka) = (vj o w;(K2))<°. Now by part 1) of Lemma 6.5, (K2(9;)|K2,v)
is a defect extension with v(0; — K3) = {a € vKy | a < v;(Kyv;w;)}, that is,
H; = v;(Kyvjw;) = v;(Kqvjw;) is its associated convex subgroup.

Suppose that there is some ¢ € I\ J such that H; is also the convex subgroup
associated with some Galois defect extension of (K3, v). In this case we take (L, w;)
to be a maximal purely wild extension (L, w;) of (Kyv;, w;). By Lemma 6.2, (L, w;)
is a tame field and thus does not have any nontrivial defect extensions. As Ksv; is
perfect, being an algebraic extension of K;v;, we have that (L, w;) is an immediate
extension of (Kyv;, w;), that is, w;L = w;(Kyv;) and Lw; = Kyvyw;. We take
(K3, v;) to be an algebraic extension of (K5, v;) such that v; K3 = v; Ky and Kzv; =
L, and that [K} : Ky = [Kiv; : Kev;] holds for every finite subextension Kj| K5
of K3|Kj; for the construction of such extensions, see [7, Section 2.3]. We set
v = v; ow; o v; on Kj; since v; K3 = v; K3 and (K3v;, w;) = (L, w;) is an immediate
extension of (Kyv;, w;), also (K3,v) is an immediate extension of (K3, v).

Take any j € J; we will show that we still have K3v; = Kzvjw;(t;)Y?”. Since
Kjv;w; is perfect, being an algebraic extension of the perfect field Kjvw; , it will
then follow as in the beginning of this proof that (Kj3(J;)|Kj5,v) is still a defect
extension with associated convex subgroup H; .

First assume that j > i. Then Kng = KQUj = KQijj(tj>1/poo = KnglUj(tj)l/poo
since Kzv,w; = Lw; = Kyv;w; and Ksv; and Ksv;w; are equal to or residue fields
of K3vz~wz~ .
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Now assume that j < i. Suppose that Kzv; properly contains Ksvw; (tj)l/poo.
Then there is a finite subextension Kj|K, of K3|K, such that Kjv; properly con-
tains Khvw;(t;)/P~. Using that Kyv; = Kyv;w;(t;)YP” and that Khv; is equal to
or a residue field of Kjv;w; and Kyv; is equal to or a residue field of Kyvjw;, we
compute:

(K2 Ka] > [Kyuy: Koug] > [Kupw(8) Y77+ Kyvjw(t) 77
= [Kévjwj . KQijj] 2 [Kévz . KQUZ'] = [Ké . KQ] .
This contradiction proves that Kzv; = Ksv;w;(t;)/P” also holds in this case.

Finally, we show that H; cannot appear as the convex subgroup associated with
any Galois defect extension of (K3,v). This will contradict the maximality of
(Kq,v) and show that it satisfies the statement of our theorem. Suppose the con-
trary, and let (K3(0)|K3,v) be an Artin-Schreier defect extension with H; as its
associated convex subgroup. Since v;(K3v;) properly contains H; = v;(Kjv;w;), it
follows that there is some b € K3 such that v(J — b) € v;(K3v;). With ¢/ :==9 —b
we obtain that v;(¢ — K3v;) = {a € 1;(K3v;) | a < 0;(Kyv;w;)}. Hence Lemma 6.3
shows that (K3v;(Jv;)|K3v;,0;) is a nontrivial defect extension. Thus by part 1)
of Lemma 6.5, also (K3v;(Jv;)|K3v;, w;) is a nontrivial defect extension. However,
this contradicts the fact that by our construction, (K3v;,w;) is a tame and thus
defectless field with respect to w; . ([l

6.5. The case of mixed characteristic. We choose a perfect field K of char-
acteristic p > 0 containing F7¢. We denote the p-adic valuation on Q by v, and
take an algebraic extension (Lg,v,) such that (Lg,v,) is henselian, v,Ly = v,Q
and Lov, = F3°. Then we construct an extension (Li,v,) of (Lo, v,) such that
vyl = v,Q and Lyv, = K. See [7, Section 2.3] for information on the construction
of such extensions. By Proposition 6.6 there is an algebraic extension (L, v,) of
(Lo, vp) such that Lv, = K and (L, v,) is a deeply ramified field admitting a Galois
defect extension (L(a)|L,v,) of degree p with independent defect and associated
convex subgroup {0}.

Example 6.10. Now take any nontrivial valuation v on K. If we choose K to
be algebraically closed, then it does not admit any Galois defect extension. Still,
(L(a)|L,v,00) is a Galois defect extension, and as the convex subgroup associated
with the extension (L(a)|L,v,) is {0}, by part 1) of Lemma 6.5 the convex sub-
group associated with the extension (L(a)|L,v,0v) is vK. This is the only convex
subgroup of (v, 0v)L that appears as convex subgroup associated with some Galois
defect extension of (L, v, o 0). O

The situation changes when (K, v) itself admits Galois defect extensions. Then
these can be lifted to Galois defect extensions of (L, v, o ©), and the convex sub-
groups associated with Galois defect extensions of (K,v) appear as convex sub-
groups associated with Galois defect extensions of (L, v, o v) that are properly
contained in v(Lw,). This will be exploited in the
Proof of part 2) of Theorem 1.4. Let A denote the largest proper convex subgroup

of I'. Denote by C¥ the set of all proper convex subgroups of A in C**. By part 1) of
Theorem 1.4 we can choose a perfect henselian valued field (K, v) of characteristic
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p for which the associated convex subgroups are exactly the elements of C¥'. We
take (L,v,) as described at the beginning of this section and consider (L, v, o v)
which is a deeply ramified field since (L,v,) is and K is perfect.

Now 0K is the largest proper convex subgroup of (v, 0 ¥)L and it is shown as in
the proof of part 1) of Theorem 1.4 that a convex subgroup of K is an associated
convex subgroup for (K,v) if and only if it is an associated convex subgroup for
(L, v, 0 D).

It remains to deal with the convex subgroup vK of v, ovL. If it is an element of
C*, then we are done because (L(a)|L,v,) is a Galois defect extension of degree p
with independent defect, and it follows that also (L(a)|L,v, o 0) is a Galois defect
extension of degree p with independent defect.

Finally, assume that 9K is not an element of C*?. Then we replace (L, v,) by a
maximal purely wild extension, which does not change the residue field K because
it is perfect, and is a tame field by Lemma 6.2. After this, (L, v,) does not admit
any defect extension and 0K cannot be an associated convex subgroup for (L, v,).
It is then shown as in the proof of part 1) of Theorem 1.4 that it also cannot be
an associated convex subgroup for (L,v, o v). This completes the proof of part 2)
of Theorem 1.4. 0
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