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Abstract. We show how suitable extensions (L|K, v) of prime degree of valued
fields give rise to definable coarsenings of the valuation rings of L and K. In the
case of Artin-Schreier and Kummer extensions with wild ramification, we can
also define the ramification ideal. We demonstrate the use of the coarsenings
on L, their maximal ideals, and the ramification ideals for the classification of
defects and for the presentation of the Kähler differentials of the extension of the
valuation rings of (L|K, v), and their annihilators. Finally, we give a construction
that realizes predescribed convex subgroups of suitable value groups as those that
are associated with Galois extensions of degree p with independent defect, which
in turn give rise to definable coarsenings.

1. Introduction

In this paper, for Galois extensions (L|K, v) of prime degree, as studied in [2, 3],
we will discuss definable coarsenings of the valuation rings of L and K, and their
applications to the presentation of the Kähler differentials of the extension of the
valuaion rings of (L|K, v). As our main interest are these applications, we will only
deal with definability in suitable expansions of the language Lval of valued fields,
instead of the language of rings.

Moreover, we will be interested in definable coarsenings of both the valuation
ring OL of v on L and the valuation ring OK of v on K; however, it is the former
that are important for our applications. Under certain additional assumptions
the coarsenings of OK have already been shown in [6] to be definable in the ring
language.

The notions and notations we will now use will be introduced in Section 2.

1.1. Coarsenings defined from immediate elements in valued field exten-
sions. Take any valued field extension (L|K, v) and an arbitrary element z ∈ L\K.
For a nonempty subset M ⊆ K we define

v(z −M) := {v(z − c) | c ∈ M} ⊆ vL .

If M = K, then the set v(z − K) ∩ vK is an initial segment of vK. For the
properties of the sets v(z −K), see [13, Chapter 2.4]. If v(z −K) has no maximal
element, then we call z an immediate element of the extension (L|K, v). In this
case, v(z −K) ⊆ vK.
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In Section 3, we will define from an immediate element z a coarsening Oz−K of
the valuation ring OL of L in the language Lval,K of valued fields with a predicate
for membership in K. This coarsening plays an important role in our study of

Galois defect extensions of prime degree. If z does not lie in the completion K̂
of (K, v), then v(z −K) is bounded from above and −v(z −K) is bounded from
below in vK. In this case,

(1) Iz−K := {b ∈ L | ∃c ∈ K : vb ≥ −v(z − c)}
is a (possibly fractional) OL-ideal. When we speak of OL-ideals, we always include
fractional ideals, that is, OL-modules I ⊂ L for which there is some a ∈ OL such
that aI ⊆ OL .
For an OL-ideal I, its invariance valuation ring O(I) (see the definition in Sec-

tion 2.4) is the largest of all coarsenings O′ of OL such that I is an O′-ideal. It is
definable in the ring language augmented by a predicate for membership in I. We
define Oz−K to be the invariance valuation ring of Iz−K .

1.2. Galois defect extensions of prime degree. These extensions have been
studied in [16] and [2]. Take a valued field (K, v) with charKv = p > 0, and a
Galois defect extension E = (L|K, v) of prime degree p. For every σ in its Galois
group Gal (L|K), with σ ̸= id, we set

(2) Σσ :=

{
v

(
σb− b

b

)∣∣∣∣ b ∈ L×, σb ̸= b

}
.

This set is a final segment of vK and independent of the choice of σ (see Theo-
rem 4.1); we denote it by ΣE . It is shown in [16, Section 2.4] that

(3) IE = (b ∈ L | vb ∈ ΣE) = {b ∈ L | vb ∈ ΣE ∨ b = 0}
is the unique ramification ideal of E . We set OE := O(IE) and denote its maximal
ideal by ME . We denote by Lval,K the language of valued fields with a predicate
for membership in K and prove in Section 4:

Proposition 1.1. Take a Galois extension E = (L|K, v) of prime degree p.

1) The ideals OE and ME are Lval,K-definable in (L, v).

2) If charK = 0, then assume in addition that K contains a primitive p-th root of
unity. Then also the ideal IE is Lval,K-definable in (L, v).

A main aim of this paper is to describe the role the ideals IE , OE and ME play
in the description of the structure of Artin-Schreier extensions and Kummer defect
extensions of prime degree. This will be done in Section 4.

We say that E has independent defect if

(4) IE = ME and ME is a nonprincipal OE -ideal,

otherwise we will say that E has dependent defect. We will show in Section 4 that
in the case of Artin-Schreier extensions and Kummer extensions of prime degree,
this definition is equivalent to the one given in [2].

Let us give an example for the importance of independent defect. A valued field
(K, v) is called a roughly deeply ramified field, or in short an rdr field, if the
following conditions hold:



DEFINABLE COARSENINGS OF VALUATION RINGS 3

(DRvp) if charKv = p > 0, then vp is not the smallest positive element in the
value group vK,

(DRvr) if charKv = p > 0, then OK/pOK is semiperfect if charK = 0, and the

completion K̂ of (K, v) is perfect if charK = p.

The following is a consequence of [16, Theorem 1.10 1)]:

Theorem 1.2. Assume that (K, v) is a roughly deeply ramified field. Then ev-
ery Galois defect extension E = (L|K, v) of prime degree p = charKv > 0 has
independent defect.

1.3. Deeply ramified fields and Kähler differentials. We call (K, v) a deeply
ramified field if it satisfies condition (DRvr) together with

(DRvg) whenever Γ1 ⊊ Γ2 are convex subgroups of the value group vK, then Γ2/Γ1

is not isomorphic to Z (that is, no archimedean component of vK is discrete).

Every perfect valued field of positive characteristic p and every perfectoid field is
a deeply ramified field with p-divisible value group. Every deeply ramified field is
an rdr field.

A theorem of Gabber and Ramero uses Kähler differentials, that is, modules of
relative differentials, to characterize deeply ramified fields (cf. [5, Theorem 6.6.12
(vi)] and [3, Theorem 1.2]). When A is a ring and B is an A-algebra, then we
denote by ΩB|A the Kähler differentials of B|A (see Section 2.3). Given a valued
field (K, v), we denote by Ksep the separable algebraic closure and extend v from
K to Ksep. The following result does not depend on the choice of the extension of
v since all of the possible extensions are conjugate.

Theorem 1.3. For a valued field (K, v),

(5) ΩOKsep |OK
= 0

holds if and only if (K, v) is a deeply ramified field.

A main goal of the papers [2, 3] is to compute the Kähler differentials of Galois
extensions E = (L|K, v) of prime degree of valued fields and use this to give an
alternative proof of Theorem 1.3. According to [2, Theorem 1.1], these Kähler
differentials can be represented in the form

(6) ΩOL|OK
≃ U/UV

where U and V are certain OL-ideals. Their computation in the case of defect
extensions E is dealt with in [2] and we will state the results in Section 4.

1.4. Defectless Galois extensions of prime degree. The paper [3] is devoted
to the case of defectless extensions E ; in Section 5 we discuss its results, as well as
the Lval,K-definition and the role of the valuation ring OE and its maximal ideal
ME . The interesting case is the one of Galois extensions E = (L|K, v) of prime
degree q = (vL : vK) (which this time is not necessarily equal to charKv). In order
to compute the ideals U and V appearing in (6) we determined in [3] a presentation
of OL as a union over a chain of simple ring extensions of OK . It depends on a
distinction of three ways in which vK extends to vL, and as a byproduct we obtain
definitions of the valuation ideal OE and ME . We will show in Section 5.2 that the
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idealME is necessary for the presentation of U and V , and also for the computation
of the annihilator of ΩOL|OK

.
In Section 5.1 we will present Lval,K-definitions of the ramification ideal IE for

the defectless wildly ramified case.

1.5. Predescribed associated convex subgroups. For Galois defect extensions
E = (L|K, v) of prime degree, we have already defined in Section 1.2 the valuation
rings OE . They correspond to convex subgroups of vL via the definition

HE := vO×
E = vOE ∩ −vOE .

Since the extension E is immediate, HE is a convex subgroup of both vK and vL.
Using this definition, we can modify the original definition for independent defect

given in [16] in the following way: E has independent defect if

(7) ΣE = {α ∈ vK | α > HE} and vK/HE has no smallest positive element;

otherwise we will say that E has dependent defect. If (K, v) has rank 1 (i.e.,
its value group is order isomorphic to a subgroup of R), then condition (7) just
means that ΣE consists of all positive elements in vK. In the case of independent
defect, we will call HE the convex subgroup associated with E . In order not
to overload our sentences, we will write “associated convex subgroup” for “convex
subgroup associated with a Galois defect extension of prime degree”.

For an ordered abelian group Γ, denote by C(Γ) the chain of its proper convex
subgroups, and by Cpr(Γ) the chain of its proper principal convex subgroups. If H
is a convex subgroup of Γ that is the smallest among all convex subgroups that
contain a given element γ ∈ Γ, then we call it a principal convex subgroup,
and if it is largest among all convex subgroups that do not contain a given element
γ ∈ Γ, then we call it a subprincipal convex subgroup. A subprincipal convex
subgroup may or may not be principal. In Section 6 we will prove:

Theorem 1.4. Let p be a prime and take any totally ordered set I. Then there
exists an ordered abelian group Γ with Cpr(Γ) order isomorphic to I such that for
any subset Csp ⊆ C containing only subprincipal convex subgroups, the following
statements hold.

1) There exists a perfect henselian valued field of characteristic p with value group
Γ for which the associated convex subgroups are exactly the elements of Csp.

2) Assume in addition that Γ has a largest proper convex subgroup. Then there
exists a henselian deeply ramified field of characteristic 0 and residue characteristic
p with value group Γ for which the associated convex subgroups are exactly the
elements of Csp.

In an ordered abelian group with only finitely many proper convex subgroups,
each of them is subprincipal. Therefore, the next result follows immediately from
our theorem:

Corollary 1.5. Let p be a prime and take any finite totally ordered set I. Then
there exists an ordered abelian group Γ with Cpr(Γ) order isomorphic to I such that
for any set H of proper convex subgroups of Γ, there exists a perfect henselian valued
field of characteristic p as well as a henselian deeply ramified field of characteristic
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0 and residue characteristic p with value group Γ for which the associated convex
subgroups are exactly the elements of H.

2. Preliminaries

2.1. Notation. For a valued field (K, v), we denote the value group by vK, the
residue field by Kv, the valuation ring by OK , and its maximal ideal by MK . We
set vK>0 := {α ∈ vK | α > 0} and vK<0 := {α ∈ vK | α < 0}. Throughout, we
will use the convention that v0 = ∞ > α for all α ∈ vK.

By (L|K, v) we denote a field extension L|K with a valuation v on L, where K
is endowed with the restriction of v. In this case, there are induced embeddings of
vK in vL and of Kv in Lv. The extension (L|K, v) is called immediate if these
embeddings are onto. In this case, if z ∈ L \ K, then v(z − K) has no maximal
element, and therefore z is an immediate element of (L|K, v); this follows from [13,
Lemma 2.9 2)] and the fact that each subextension of an immediate extension is
immediate.

We call (L|K, v) unibranched if the valuation v has only one extension from K
to L. A valued field is henselian if and only if all of its algebraic extensions are
unibranched.

If (L|K, v) is a finite unibranched extension, then by the Lemma of Ostrowski
([18, Corollary to Theorem 25, Section G, p. 78]),

(8) [L : K] = p̃ν · (vL : vK)[Lv : Kv] ,

where ν is a non-negative integer and p̃ the characteristic exponent of Kv, that
is, p̃ = charKv if it is positive and p̃ = 1 otherwise. The factor d(L|K, v) := p̃ν

is the defect of the extension (L|K, v). If d(L|K, v) = 1, then the extension
(L|K, v) is called defectless; otherwise we call it a defect extension. A henselian
field (K, v) is a defectless field if every finite unibranched extension of (K, v) is
defectless; note that this is always the case if charKv = 0.

2.2. Ramification ideals. If L|K is Galois, then we denote its Galois group by
GalL|K. In this case, a nontrivial OL-ideal contained in ML is called a ramifi-
cation ideal of (L|K, v) if it is of the form

(9)

(
σb− b

b

∣∣ σ ∈ H , b ∈ L×
)

for some subgroup H of GalL|K. For more information on ramification ideals, see
[14].

2.3. Kähler differentials. Assume that A is a ring and B is an A-algebra. Then
ΩB|A denotes the module of relative differentials (Kähler differentials), that is, the
B-module for which there is a universal derivation

d : B → ΩB|A

such that for every B-module M and derivation δ : B → M there is a unique
B-module homomorphism

ϕ : ΩB|A → M

such that δ = ϕ ◦ d.
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2.4. Invariance group and invariance valuation ring.

Take any valued field (L, v) and OL-ideal I. We set

(10) O(I) := {b ∈ L | bI ⊆ I} and M(I) = {b ∈ L | bI ⊊ I} .
We call O(I) the invariance valuation ring of I. The following is part of [17,
Theorem 3.6]:

Proposition 2.1. For every OL-ideal I, O(I) is a valuation ring of L containing
OL , with maximal ideal M(I), which is a prime OL-ideal. It is the largest of all
valuation rings O of L containing OL for which I is an O-ideal.

If the ideal I is definable in an expansion L of Lval, then also O(I) and M(I)
are L-definable:

O(I) := {b ∈ L | ∀c ∈ I : bc ∈ I},(11)

M(I) := {b ∈ O(I) | ∃a ∈ I ∀c ∈ I : bc ̸= a} .(12)

For a subset M of an ordered abelian group Γ, we define its invariance group
to be

G(M) := {γ ∈ Γ | M + γ = M} .
This is a subgroup of Γ, and it is a convex subgroup if M is convex (which in
particular is the case if M is an initial or a final segment of Γ). If S is a final
segment of Γ and γ ∈ Γ, then γ + S := {γ + α | α ∈ S} and −S := {−α | α ∈ S}
are again final segments of Γ with

(13) G(γ + S) = G(S) = G(−S) .

For these facts and more information on invariance groups, see [17, Section 2.4]
and [12].

For every coarsening O of OL , we set

H(O) := vO ∩−vO = vO× .

This is a convex subgroup of the value group vL of (L, v). If M is the maximal
ideal of O, then

(14) vM = {α ∈ vL | α > vO×} = {α ∈ vL | α > H(O)} .
The valuation w associated with O is (up to equivalence) given by

(15) wa = va/H(O)

for every a ∈ K, the value group of w is canonically isomorphic to vK/H(O), and
the value group of the valuation induced by v on the residue field Kw is canonically
isomorphic to H(O) (cf. [18]). The function O 7→ H(O) sends every coarsening
O of OL to a convex subgroup of vL. Its inverse is given by sending a convex
subgroup H of vL to

(16) O(H) := {b ∈ K | ∃α ∈ H : α ≤ vb} .
We call this the coarsening of OL associated with H.

Further, for every Ov-ideal I we define

H(I) := H(O(I)) .
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By [17, Theorem 3.6 3)],

(17) H(I) = H(O(I)) = G(vI)
and

(18) O(I) = O(G(vI)) = O(H(I)) .

The next result is part of [17, Lemma 3.5].

Lemma 2.2. For every coarsening O of OL with maximal ideal M,

(19) H(O) = G(vO) = G(vM) .

We leave the straightforward proof of the following result to the reader.

Lemma 2.3. If I is an OL-ideal and J = aI with 0 ̸= a ∈ L, then O(J) = O(I),
M(J) = M(I) and H(J) = H(I).

3. Immediate elements in arbitrary valued field extensions

Take any valued field extension (L|K, v) and z ∈ L \K an immediate element in
(L|K, v), that is, the set v(z−K) has no maximal element and is an initial segment
of vK. We define

(20) Iz−K;K := (b ∈ K | vb ∈ −v(z −K)}
and

(21) Iz−K := (b ∈ L | ∃c ∈ K : vb ≥ −v(z − c)} .
If v(z − K) = vK, then Iz−K;K = K. If v(z − K) is bounded from above, then
−v(z − K) is bounded from below and therefore, Iz−K;K is a fractional OK-ideal
and Iz−K is a fractional OK-ideal. We set Oz−K;K := O(Iz−K;K) (taken in (K, v)),
and denote its maximal ideal by Mz−K;K . Likewise, we set Oz−K := O(Iz−K)
(taken in (L, v)), and denote its maximal ideal by Mz−K . We see that by (21),
Iz−K is definable in L in the language Lval,K with parameter z. Hence by (11)
and (12), also the invariance valuation ring Oz−K and its maximal ideal Mz−K are
Lval,K-definable in L with parameter z.

Since z is not a parameter in K, we may in general not have an elementary
definition of Oz−K;K and Iz−K;K in (K, v). For example, we have not even excluded
the case that z is transcendental over K. On the other hand, if z is algebraic over
K with a suitable minimal polynomial, then the situation may change, as we will
see in Sections 4.1 and 4.2.

Now we define

(22) Hz−K;K := H(Oz−K;K) = H(O(Iz−K;K))

and

(23) Hz−K := H(Oz−K) = H(O(Iz−K)) .

By (17) and (13),

Hz−K;K = G(vIz−K;K) = G(−v(z −K)) = G(v(z −K)) .
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We observe that Hz−K;K is a proper convex subgroup of vK if and only if v(z−K)
is bounded from above, and that this holds if and only if z does not lie in the
completion of (K, v). If Hz−K;K is not a proper convex subgroup, that is, Hz−K;K =
vK, then Oz−K;K = K, i.e., the corresponding valuation is trivial. Otherwise, this
coarsening of OK is nontrivial.

Now assume in addition that the extension (L|K, v) is immediate. Then as
mentioned in Section 2.1, every z ∈ L\K is an immediate element in (L|K, v), and
v(z −K) is an initial segment of vL = vK. In this case, Hz−K;K is also a convex
subgroup in vL, and moreover,

vIz−K = {α ∈ vL | ∃c ∈ K : α ≥ −v(z − c)} = −v(z −K) = vIz−K;K .

Using this together with (17), we obtain:

Hz−K = H(O(Iz−K)) = G(vIz−K) = G(vIz−K;K) = H(O(Iz−K;K)) = Hz−K;K .

4. Defect extensions of prime degree

Take a Galois defect extension E = (L|K, v) of prime degree p. We set

HE := H(OE) = H(O(IE)) .

By Lemma 2.2, HE is the invariance group of vOE and of vME . By (17), Lemma 2.2
and the definition of IE ,

(24) HE = G(vIE) = G(ΣE) = G(vOE) = G(vME) .

Theorem 4.1. For every Galois defect extension E = (L|K, v) of prime degree p,
the following statements hold.

1) The set Σσ is a final segment of vK>0 and independent of the choice of a
generator σ of GalL|K.

2) For every a ∈ L \K and every generator σ of GalL|K,

(25) ΣE = −v(a−K) + v(σa− a)

and

(26) IE = (σa− a)Ia−K , HE = Ha−K , OE = Oa−K , and ME = Ma−K .

3) For every a ∈ L \K,

(27) HE = G(v(a−K)) = G(−v(a−K)) .

Proof. 1): By [16, Theorem 3.5], Σσ is independent of the choice of a generator σ
of GalL|K; so we denote it by ΣE . By [16, Theorem 3.4], ΣE is a final segment
of vK>0. Note that vK>0 = vL>0 since vK = vL, as the extension (L|K, v) is
immediate.

2): Equation (25) is part of [16, Theorem 3.4]. It implies Equation (26) by way of
the definitions of IE and Ia−K , and Lemma 2.3.

3): From (24) we know that HE is equal to G(ΣE), and by (25) this is equal
to G(−v(a − K) + v(σa − a)). Since −v(a − K) + v(σa − a) is a final segment
of vK by part 1) of our theorem and α := v(σa − a) ∈ vL, we can infer from
equation (13) that G(−v(a − K) + v(σa − a)) = G(−v(a − K)). Finally, the
equality G(v(a−K)) = G(−v(a−K)) follows from [17, Lemma 2.12 3)]. □
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Based on part 2) of this theorem, we can now give the

Proof of part 1) of Proposition 1.1:
We have OE = O(Ia−K) = {b ∈ L | bIa−K ⊆ Ia−K} = {b ∈ L | ∀c ∈ K ∃c′ ∈ K :
vb(a− c) = v(a− c′)} ∪ {0}, where we use that v(a−K) is a final segment of vL.
Since O(Ia−K) does not depend on the choice of a ∈ L \K, OE has the following
parameter free definitions in the language Lval,K :

(28) OE = {b ∈ L | ∀x ∈ L \K ∀c ∈ K ∃c′ ∈ K : vb(x− c) = v(x− c′)} ∪ {0} ,

and the quantifier “∀x ∈ L \K” can also be replaced by “∃x ∈ L \K”. Further,
ME = {b ∈ L | bIa−K ⊊ Ia−K} has the following parameter free definition in the
language Lval,K :

(29) ME = {b ∈ L | b ∈ OE ∧ ∃c ∈ K ∀c′ ∈ K : vb(x− c) ̸= v(x− c′)} .

Let us show that our definitions (4) and (7) of independent defect are equivalent.
By definition of IE we have ΣE = vIE . By (14), vME = {α ∈ vK | α > H(OE)} =
{α ∈ vK | α > HE}. Hence (7) reads as vIE = vME . Since the function M 7→
vM := {va | a ∈ M} that sends every OL-module M ⊆ L to a corresponding final
segment in vL is bijective, the latter equality is equivalent to the equality IE = ME .
Further, as vK/HE is the value group of OE , vK/HE having no smallest positive
element is equivalent to ME being a nonprincipal OE -module.

Finally, we show that (7) is equivalent to the condition (6) in the original defini-
tion of independent defect in [16]. It is obvious that (7) implies the latter. For the
converse, assume that ΣE = {α ∈ vK | α > H} for some proper convex subgroup
H of vL such that vL/H has no smallest positive element. Then by [17, Lemma
2.13 5)], H is the invariance group of ΣE , hence by (24), it is equal to HE .

While we have given elementary definitions of OE and ME , the problem with
doing the same for IE is that we may not have enough information on the factor
σa − a. We will now show that this changes when we know that the extension is
an Artin-Schreier or a Kummer extension of prime degree. We will thereby prove
part 2) of Proposition 1.1.

4.1. The equal characteristic case. Let us first discuss the case where (K, v)
is of equal positive characteristic, that is, charK = charKv = p > 0. Then
every Galois defect extension E = (L|K, v) of prime degree p is an Artin-Schreier
extension, that is, generated by an Artin-Schreier generator ϑ ∈ L \ K with
ϑp − ϑ ∈ K. By [16, Theorem 3.5],

(30) ΣE = −v(ϑ−K) .

for every such ϑ. Further, v(σϑ− ϑ) = 0, hence

IE = Iϑ−K = {b ∈ L | ∃c ∈ K : vb ≥ −v(ϑ− c)}

in this case. Equation (30) shows that the set v(ϑ − K) does not depend on the
choice of the Artin-Schreier generator of L|K, hence IE has the following parameter
free definitions in the language Lval,K :

(31) IE = {b ∈ L | ∃x ∈ L \K ∃c ∈ K : xp − x ∈ K ∧ vb ≥ −v(ϑ− c)}
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and

(32) IE = {b ∈ L | ∀x ∈ L \K ∃c ∈ K : xp − x ∈ K → vb ≥ −v(ϑ− c)} .

Now assume that E has independent defect with associated convex subgroup HE .
By [2, Theorem 1.7], this holds if and only if

(33) v(ϑp − ϑ− ℘(K)) = {α ∈ pvK | α < HE} .

Since vL/HE has no smallest positive element, equation (33) is equivalent to

(34) HE = {β ∈ vK | β > v(ϑp − ϑ− ℘(K)) and − β > v(ϑp − ϑ− ℘(K))} .

In other words,

(35) HE = {±β ∈ vK | ∀c ∈ K : v(ϑp − ϑ− cp + c) < β ≤ 0} .

The convex subgroup HE gives rise to an Lval-definition of the coarsening OE;K =
O(HE) = {b ∈ K | ∃α ∈ HE : α ≤ vb} (taken in K) of the valuation ring OK ,
namely

(36) OE;K = {b ∈ K | ∀c ∈ K : v(ϑp − ϑ− cp + c) < vb} ,

whose value group is vK/HE .

For our applications, we are more interested in the coarsening of OL correspond-
ing to HE . By (16),

(37) OE = O(HE) = {b ∈ L | ∃α ∈ HE : α ≤ vb} .

By the definition of independent defect combined with Equation (30), if E has
independent defect with associated convex subgroup HE , then

(38) v(ϑ−K) = {α ∈ vK | α < HE} .

Since this does not depend on the choice of the Artin-Schreier generator of L|K,
OE has the following parameter free definitions in the language Lval,K :

(39) OE = {b ∈ L | ∀x ∈ L \K ∀c ∈ K : xp − x ∈ K → v(x− c) < vb}

and

(40) OE = {b ∈ L | ∃x ∈ L \K ∀c ∈ K : xp − x ∈ K ∧ v(x− c) < vb} .

Also the maximal ideal ME of OE has a parameter free definition in the language
Lval,K :

(41) ME = {b ∈ L | ∃x ∈ L \K ∃c ∈ K : xp − x ∈ K ∧ −v(x− c) ≤ vb} .
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4.2. The mixed characteristic case. Now we discuss the case where (K, v) is
of mixed characteristic, that is, charK = 0 and charKv = p > 0. We assume
in addition that K contains a primitive p-th root of unity ζp . Then every Galois
defect extension E = (L|K, v) of prime degree p is a Kummer extension, that
is, generated by a Kummer generator η ∈ L \ K with ηp ∈ K. Then by [16,
Theorem 3.5] and [16, Lemma 2.5],

(42) ΣE = v(ζp − 1)− v(η −K) =
1

p− 1
vp− v(η −K)

for every such η. Further, ση − η = ζp − 1 for suitable ζp , hence

IE = (ζp − 1)Iϑ−K = {b ∈ L | ∃c ∈ K : vb ≥ 1

p− 1
vp− v(ϑ− c)}

in this case. Similarly as in the equal characteristic case, IE has the following
parameter free definitions in the language Lval,K :

(43) IE = {b ∈ L | ∃x ∈ L \K ∃c ∈ K : xp − x ∈ K ∧ vb ≥ 1

p− 1
vp− v(x− c)}

and

(44) IE = {b ∈ L | ∀x ∈ L\K ∃c ∈ K : xp−x ∈ K → vb ≥ 1

p− 1
vp−v(x−c)} .

Now assume that E has independent defect with associated convex subgroup HE .
By [2, Theorem 1.7], this holds if and only if

(45) v(ηp −Kp) = v(ζp − 1)p + {α ∈ pvK | α < HE} .
Similarly as in the equal characteristic case, we obtain that

(46) HE = {±β ∈ vK | ∀c ∈ K : v(ηp − cp)− p

p− 1
vp < β ≤ 0} ,

and we have the Lval-definition

(47) OE;K := {b ∈ K | ∀c ∈ K : v(ηp − cp)− p

p− 1
vp < vb} .

Note that for this definition and definition (36) it is not needed that (K, v) be
henselian, and that in fact, they will be applied to deeply ramified fields, which are
not required to be henselian. For the case of henselian fields (K, v), these definitions
are used in [6, Theorem 4.11] to define corresponding henselian valuations on K
that are definable in the language of rings.

By the definition of independent defect combined with Equation (42), if E has
independent defect with associated convex subgroup HE , then

(48) v(ϑ−K)− v(ζp − 1) = {α ∈ vK | α < HE} .
Hence in this case, using again (37) together with the fact that equation (48) is
independent of the choice of η ∈ L\K satisfying ηp ∈ K), we can give the following
parameter free Lval,K-definitions of OE :

OE = {b ∈ L | ∀x ∈ L \K ∀c ∈ K : (xp ∈ K ∧ v(x− 1) > 0)

→ v(x− c)− 1

p− 1
vp < vb}
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and

OE = {b ∈ L | ∃x ∈ L \K : xp ∈ K ∧ v(x− 1) > 0

∧ ∀c ∈ K : v(x− c)− 1

p− 1
vp < vb} .

Also the maximal ideal of OE admits a parameterfree Lval,K-definition:

ME = {b ∈ L | ∃x ∈ L \K : xp ∈ K ∧ v(x− 1) > 0

∧ ∃c ∈ K : −v(x− c) +
1

p− 1
vp ≤ vb} .

4.3. Properties and applications of IE , OE and ME . We keep our assumption
that E = (L|K, v) is a Galois defect extension of prime degree p.

Equations (31), (32), (43) and (44) prove part 2) of Theorem 1.1.

The following facts are proven in [2]. Part 1) follows directly from our definition
OE = O(IE) in the introduction together with Proposition 2.1 which implies the
assertion. However, in [2], under the additional assumption that K contains a
primitive p-th root of unity if charK = 0, OE is defined in a different way, and our
assertion is part of [2, Theorem 1.4], as is part 2).

Proposition 4.2. Take a Galois extension E = (L|K, v) of prime degree p with
independent defect.

1) The ideal ME is equal to the ramification ideal IE , and OE is the largest of all
coarsenings O′ of OL such that IE is an O′-ideal.

2) If charK = 0, then assume in addition that K contains a primitive p-th root
of unity. Then the trace Tr L|K (ML) is equal to ME ∩K.

The valuation ring OE is of interest for the computation of the annihilator of
ΩOL|OK

. The annihilator of an OL-module M is the largest among all OL-ideals J
for which JM = {0}; we denote it by annM . From [2, Theorem 1.4] we know that

ΩOL|OK
∼= IE/I

p
E ,

which is zero if and only if E has independent defect; in this case, annΩOL|OK
= OL .

For the case of dependent defect, we infer from [2, Proposition 4.7 2)], denoting by
vE the valuation on L having valuation ring OE :

Proposition 4.3. If there is a ∈ K such that vEI
p−1
E has infimum vEa in vEL but

does not contain this infimum, then

(49) annΩOL|OK
= aO(IE) ,

which properly contains Ip−1
E . In all other cases, annΩOL|OK

= Ip−1
E .
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5. Defectless extensions

We take an extension E = (L|K, v) of prime degree q, not necessarily equal to
charKv. Then either [L : K] = (vL : vK) or [L : K] = [Lv : Kv]. We will discuss
the more interesting case of [L : K] = (vL : vK), which we will assume throughout.

We define HE to be the largest convex subgroup of vL which is also a convex
subgroup of vK; it exists since unions over arbitrary collections of convex sub-
groups are again convex subgroups. We take OE to be the coarsening O(HE) of
OL associated with HE so that its value group is vL/HE , and denote its maximal
ideal by ME .
The subgroup HE defined here has important similarities with the convex sub-

group HE defined in the defect case.

We distinguish three mutually exclusive cases describing how vK extends to vL;
for convenience, we use the notation of [3]:

(DL2a): there is no smallest convex subgroup of vL that properly contains HE ;

(DL2b): there is a smallest convex subgroup H̃E of vL that properly contains HE ,
and the archimedean quotient H̃E/HE is dense;

(DL2c): there is a smallest convex subgroup H̃E of vL that properly contains HE ,
and the archimedean quotient H̃E/HE is discrete.

Our goal is to find an element x ∈ L with vx /∈ vK such that

(50) OL =
⋃

c∈K with vcx>0

OK [cx] .

If c, c′ ∈ K with vc ≥ vc′ , then cx = c
c′
c′x ∈ OK [c

′x], hence OK [cx] ⊆ OK [c
′x].

Theorem 5.1. [3, Theorem 3.3] Take an extension E = (L|K, v) of prime degree
q = (vL : vK), with x0 ∈ L such that vx0 /∈ vK. Then qvx0 ∈ vK, and the
following assertions hold.

1) If E is of type (DL2a) or (DL2b), then (50) holds for x = x0 .

2) If E is of type (DL2c), then (50) holds for x = xj
0 with suitable j ∈ {1, . . . , q−1}.

If in addition HE = {0}, then OL = OK [cx] for suitable c ∈ K.

The assumption of part 1) holds in particular when every archimedean component
of vK is dense, and this in turn holds for every deeply ramified field (K, v).

With x as in this theorem, we have:

Proposition 5.2. [3, Proposition 3.4] The OL-ideal ME is equal to the OL-ideal

(51) Ix := (cx | c ∈ K with vcx > 0) .

Corollary 5.3. The set {vcx | c ∈ K with vcx > 0} is coinitial in vK>0 \HE .

Lemma 5.4. For every x0 with vx0 /∈ vK we have Ix0 ⊆ Ix .

Proof. Take c0 ∈ K such that vc0x0 > 0, so that c0x0 ∈ OL . If x is as in Theo-
rem 5.1, then there is c ∈ K such that c0x0 ∈ OK [cx]. Consequently, c0x0 ∈ Ix .
This proves that Ix0 ⊆ Ix . □
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From this lemma together with Proposition 5.2 we obtain the following parameter
free Lval,K -definition of ME :

(52) ME = {b ∈ L | ∃x ∈ L\K : (∀y ∈ K : vx ̸= vy) ∧ ∃c ∈ K : va ≥ vcx > 0} .

From this, we can define OE by including the units of OE :

OE = {b ∈ L | ∀x ∈ ME : −vx < vb} .

5.1. The ramification ideal. Take a unibranched defectless Galois extension
E = (L|K, v) of prime degree p = (vL : vK) = charKv. We denote by IE the
ramification ideal of E . From [14, Theorem 3.15] we obtain:

Theorem 5.5. 1) If E is an Artin-Schreier extension, then it admits an Artin-
Schreier generator ϑ of value vϑ ≤ 0 such that vϑ /∈ vK. For every such ϑ,

(53) IE =

(
1

ϑ

)
.

2) Let E be a Kummer extension. Then there are two cases:

a) E admits a Kummer generator η such that 0 < vη /∈ vK. For every such η,

(54) IE = (ζp − 1) .

b) E admits a Kummer generator η such that η is a 1-unit with v(ζp − 1) ≥
v(η − 1) /∈ vK. For every such η,

(55) IE =

(
ζp − 1

η − 1

)
.

Let us show that under the assumptions of the theorem, IE always has a pa-
rameter free Lval,K -definition. If E is an Artin-Schreier extension, then we can
define

IE := { b ∈ L | ∃x ∈ L : xp − x ∈ K ∧ vx ≤ 0

∧ (∀y ∈ K : vx ̸= vy) ∧ vb ≥ vx } .

If E is a Kummer extension, then in case 2)a) of the theorem, we have vη > 0
and therefore, v(η−1) = 0. Thus, we can also in this case use (55) for the definition
of IE :

IE := { b ∈ L | ∃x ∈ L : xp ∈ K ∧ vp ≥ (p− 1)v(x− 1)

∧ (∀y ∈ K : 0 < vx ̸= vy ∨ 0 < v(x− 1) ̸= vy)

∧ (p− 1)vb ≥ vp− (p− 1)v(x− 1) } .
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5.2. Importance of the ideals IE , OE and ME . We will now summarize the
results for defectless Galois extensions E = (L|K, v) which will demonstrate the
importance of the ideals IE , OE and ME . If [L : K] = q ̸= charK, then we will
assume that K contains a q-th root of unity.

Theorem 5.6. [3, Theorem 4.6] Take an Artin-Schreier extension E = (L|K, v) of
degree p = (vL : vK). Then

(56) ΩOL|OK
∼= IEME/(IEME)

p

as OL-modules; in particular, ΩOL|OK
̸= 0.

The following is a reformulation of [3, Theorem 4.6].

Theorem 5.7. Let E = (L|K, v) be a Kummer extension of prime degree q with
e (L|K) = q.

If q ̸= charKv, then

(57) ΩOL|OK
∼= ME/Mq

E

as OL-modules.
If q = charKv, then

(58) ΩOL|OK
∼= IEME/(IEME)

q

as OL-modules.
In case 2)a) of Theorem 5.5, we have that ΩOL|OK

= 0 if and only if q /∈ ME
and ME is a nonprincipal OE-ideal. The condition q /∈ ME always holds when
q ̸= charKv.

In case 2)b) of Theorem 5.5, we always have that ΩOL|OK
̸= 0.

Let us compute the annihilators of ΩOL|OK
in the above cases whenever it is

nonzero. The following is Poposition 3.21 of [17], adapted to our current notation.

Proposition 5.8. Take n ≥ 2, a ∈ OL and O a valuation ring containing OL with
maximal ideal M. Assume that (aM)n ̸= aM. Then the following statements
hold.

1) We have that

ann aM/(aM)n =

{
(aM)n−1 if M is a principal O-ideal,
(aO)n−1 = an−1O if M is a nonprincipal O-ideal.

2) The annihilator is equal to ML if and only if n = 2, a /∈ ML = M and ML is
a principal OL-ideal.

Since IE is a principal OL-ideal, we can choose a ∈ OL such that IE = aOL to
obtain that

IEME = aME .

Now we apply Proposition 5.8.

Proposition 5.9. Let E be an Artin-Schreier extension or a Kummer extension of
degree p = charKv. Assume that [L : K] = (vL : vK) and that ΩOL|OK

̸= 0. Then

annΩOL|OK
=

{
(aME)

p−1 if ME is a principal OE-ideal,
(aOE)

p−1 = ap−1OE if ME is a nonprincipal OE-ideal.
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Further, annΩOL|OK
= ML if and only if p = 2, a /∈ ML = ME and ML is a

principal OL-ideal.

Let us note that if (DRvp) holds (and in particular, if (K, v) is a deeply ramified
field), then the maximal ideal of any coarsening of OL is never principal. In this
case, ML is never the annihilator of ΩOL|OK

.

In the case of a Kummer extension of prime degree q = (vL : vK) ̸= charKv,
(57) holds, and we set a = 1. Then we obtain from Theorem 5.7 and Proposi-
tion 5.8:

Proposition 5.10. Let E be a Kummer extension of degree q = (vL : vK) ̸=
charKv. Assume that ΩOL|OK

is nonzero. Then ME is a principal OE-ideal, and

annΩOL|OK
= Mq−1

E .

Further, annΩOL|OK
= ML if and only if q = 2 and ME = ML.

6. Deeply ramified fields in equal characteristic with prescribed
associated convex subgroups

6.1. Preliminaries from ramification theory. An algebraic extension (L|K, v)
of a henselian valued field (K, v) is called tame if every finite subextension K ′|K
satisfies the following conditions:

(T1) the ramification index (vK ′ : vK) is not divisible by charKv,

(T2) the residue field extension K ′v|Kv is separable,

(T3) the extension (K ′|K, v) is defectless.

A henselian valued field (K, v) is called a tame field if the algebraic closure Kac

of K with the unique extension of v is a tame extension of (K, v). It follows
from conditions (T1)–(T3) that all tame fields are perfect defectless fields. For the
algebra and model theory of tame fields, see [11].

The ramification field of a Galois extension (L|K, v) with Galois group G =
Gal (L|K) is the fixed field in L of the ramification group

(59) Gr :=

{
σ ∈ G

∣∣∣∣ σb− b

b
∈ ML for all b ∈ L×

}
.

When dealing with a valued field (K, v), we will tacitly assume v extended to its
algebraic closure. Then the absolute ramification field of (K, v) (with respect
to the chosen extension of v), denoted by (Kr, v), is the ramification field of the
Galois extension (Ksep|K, v). If (K(a)|K, v) is finite and a defect extension, then
(Kr(a)|Kr, v) is a defect extension with the same defect (see [16, Proposition 2.13]).
On the other hand, Ksep|Kr is a p-extension (see [4, Theorem (20.18)]), so every
finite extension of Kr is a tower of purely inseparable extensions and Galois ex-
tensions of degree p. If (K, v) is henselian, then (Kr, v) is its unique maximal
tame extension (see [15, Proposition 4.1]). Hence the next fact follows from [16,
Proposition 2.13]:

Lemma 6.1. If (K, v) is henselian, (K(a)|K, v) is finite and a defect extension,
and (L|K, v) is a tame extension, then d(L(a)|L, v) = d(K(a)|K, v).
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An extension (L, v) of a henselian field (K, v) is called purely wild if every finite
subextension (L0|K, v) satisfies:

(a) (vL0 : vK) is a power of the characteristic exponent of Kv,

(b) L0v|Kv is purely inseparable.

The extension (L, v) of (K, v) is purely wild if and only if it is linearly disjoint from
Kr over K (see [15, Lemma 4.2]).

Lemma 6.2. Every maximal purely wild extension of a henselian field is a tame
field.

Proof. By [15, Theorem 4.3], every maximal purely wild extension W of a henselian
field (K, v) is a K-complement of Kr, that is, W ∩Kr = K and W.Kr = Kac. By
[15, Lemma 2.1 (i)], there is also a W -complement W ′ of W r. Again by [15,
Theorem 4.3], W ′ is a maximal purely wild extension of W . By the maximality of
W , we must have W ′ = W . Hence Kac = W ′.W r = W r, which shows that W is a
tame field. □

6.2. Technical preliminaries. For the following result, see [1, Lemma 4.1] (cf.
also [8, Lemma 2.21]):

Lemma 6.3. Assume that (K(a)|K, v) is a unibranched extension of prime degree
such that v(a − K) has no maximal element. Then the extension (K(a)|K, v) is
immediate and hence a defect extension.

Lemma 6.4. 1) Let (K0, v) be a valued field of characteristic p > 0 whose value
group is not p-divisible. Take a ∈ K0 such that va < 0 is not divisible by p. Let ϑ

be a root of the Artin–Schreier polynomial Xp −X − a. Then (K
1/p∞

0 (ϑ)|K1/p∞

0 , v)

is a defect extension with independent defect, and v(ϑ−K
1/p∞

0 ) ⊆ (vK
1/p∞

0 )<0.

2) Take a perfect field k of characteristic p > 0 and K0 to be k(t), k(t)h or k((t)),
equipped with the t-adic valuation v = vt . Let ϑ be a root of the Artin–Schreier
polynomial Xp −X − 1/t. Then the assertion of part 1) holds, and

v(ϑ−K
1/p∞

0 ) = (vK
1/p∞

0 )<0 .

Proof. 1): We have that vϑ = va/p and [K0(ϑ) : K0] = p = (vK0(ϑ) : vK0). The
Fundamental Inequality (cf. (17.5) of [4] or Theorem 19 on p. 55 of [18] shows that
K0(ϑ)v = K0v and that the extension (K0(ϑ)|K0, v) is unibranched. The further
extension of v to the perfect hull

K0(ϑ)
1/p∞ = K

1/p∞

0 (ϑ)

is unique, as the extension is purely inseparable. It follows that also the extension

(K
1/p∞

0 (ϑ)|K1/p∞

0 , v) is unibranched. On the other hand, [K
1/p∞

0 (ϑ) : K
1/p∞

0 ] = p

since the separable extension K0(ϑ)|K0 is linearly disjoint from K
1/p∞

0 |K0. The

value group vK
1/p∞

0 (ϑ) = vK0(ϑ)
1/p∞ is the p-divisible hull of vK0(ϑ) = vK0 +

Zvϑ. Since pvϑ ∈ vK, this is the same as the p-divisible hull of vK0, which

in turn is equal to vK
1/p∞

0 . The residue field of K
1/p∞

0 (ϑ) is the perfect hull of

K0(ϑ)v = K0v. Hence it is equal to the residue field of K
1/p∞

0 . It follows that

the extension (K
1/p∞

0 (ϑ)|K1/p∞

0 , v) is immediate and that its defect is p, equal to

its degree. Since K
1/p∞

0 is perfect, it is deeply ramified and hence according to
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[16, part (1) of Theorem 1.10] the extension must have independent defect. The

inclusion v(ϑ−K
1/p∞

0 ) ⊆ (vK)<0 follows from [8, Corollary 2.30].

2): In all three cases we have that K
1/p∞

0 = K0(t
1/pk | k ∈ N). For the partial sums

(60) bk :=
k∑

i=1

t−1/pi ∈ K
1/p∞

0

we have

(ϑ− bk)
p − (ϑ− bk) = ϑp − ϑ− bpk + bk =

1

t
−

k−1∑
i=0

t−1/pi +
k∑

i=1

t−1/pi = t−1/pk ,

so

v(ϑ− bk) = − 1

pk+1
< 0 .

Suppose that there is c ∈ K
1/p∞

0 such that v(ϑ − c) > −1/pk for all k. Then
v(c− bk) = min{v(ϑ− c), v(ϑ− bk)} = −1/pk+1 for all k. On the other hand, there

is some k such that c ∈ K0(t
−1/p, . . . , t−1/pk) = K0(t

−1/pk). But this contradicts

the fact that v(c − t−1/p − . . . − t−1/pk) = v(c − bk) = −1/pk+1 /∈ vK0(t
−1/pk).

As v(ϑ − K
1/p∞

0 ) ⊆ (vK
1/p∞

0 )<0 by part 1), this proves that the values −1/pk

are cofinal in v(ϑ − K
1/p∞

0 ). Since vK
1/p∞

0 is a subgroup of the rationals, this

shows that the least upper bound of v(ϑ−K
1/p∞

0 ) in vK
1/p∞

0 is the element 0. As

v(ϑ−K
1/p∞

0 ) is an initial segment of vK
1/p∞

0 by [8, Lemma 2.19], we conclude that

v(ϑ−K
1/p∞

0 ) = (vK
1/p∞

0 )<0. □

When we take K0 = Fp((t)) in part 1) of this lemma, where Fp is the field with
p elements, and a = 1/t, we obtain “Abhyankar’s Example”, see [9, Example 3.12].

Lemma 6.5. Take a valued field (K, v) of characteristic p > 0, a decomposition
v = w ◦ w̄, and an Artin-Schreier extension of K with Artin-Schreier generator ϑ.
Then the following assertions hold.

1) (K(ϑ)|K, v) is a defect extension with v(ϑ−K) = {α ∈ vK(ϑ) | α < w̄(K(ϑ)w)}
if and only if (K(ϑ)|K,w) is a defect extension with w(ϑ−K) = (wK(ϑ))<0.

2) If wϑ = 0 and w̄(ϑw − Kw) = (w̄(K(ϑ)w))<0, then (K(ϑ)|K, v) is a defect
extension with v(ϑ−K) = (vK(ϑ))<0.

Proof. 1): We can write wK(ϑ) = vK(ϑ)/w̄(K(ϑ)w) and wa = va+ w̄(K(ϑ)w) for
each a ∈ K(ϑ). This implies that v(ϑ − K) = {α ∈ vK | α < w̄(K(ϑ)w) if and
only if w(ϑ−K) = (wK(ϑ))<0. By Lemma 6.3, (K(ϑ)|K, v) is a defect extension
if v(ϑ−K) is a subset of vK(ϑ) without maximal element, and similarly for w in
place of v. This fact together with the equivalence we have already shown proves
the assertion of our lemma.

2): Our assumption implies that v(ϑ − K) ⊆ (vK(ϑ))<0 since if there is c ∈ K
such that v(ϑ − c) ≥ 0, then vc = vϑ, so wc = wϑ = 0, and w̄(ϑw − cw) ≥ 0.
On the other hand, w̄(Kw) is a convex subgroup of vK, so (w̄(Kw))<0 and thus
also w̄(ϑw −Kw) is cofinal in vK<0. Since for every b ∈ Kw there is c ∈ K with
cw = b and v(ϑ− c) = w̄(ϑw − cw), it follows that v(ϑ−K) = (vK(ϑ))<0. Again
by Lemma 6.3, (K(ϑ)|K, v) is a defect extension. □
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Proposition 6.6. Take any perfect field K of characteristic p > 0 and a field
L1 of characteristic 0 carrying a p-adic valuation vp such that vpL1 = Zvpp and
L1vp = K. Set a0 := p and by induction, choose elements ai in the algebraic closure
Lac
1 of L1 such that api = ai−1 for i ∈ N, and set

L2 := L1(ai | i ∈ N) .

Further, take a ∈ Qac ⊆ Lac
2 such that

(61) ap − a =
1

p
.

Then the following assertions hold.

1) There is a unique extension of the valuation vp to L2.

2) (L2, vp) is a deeply ramified field with value group vpL2 = 1
p∞

Zvpp and residue

field L2vp = K.

3) (L2(a)|L2, vp) is a defect extension of degree p.

4) Assume that Fac
p ⊆ K and there is L0 ⊆ L1 such that (L0, vp) is henselian with

L0vp = Fac
p . Then there is a finite extension (L|L2, vp) such that Lvp = L2vp = K,

(L, vp) is a deeply ramified field, and (L(a)|L, vp) is a Galois defect extension of
degree p with independent defect and associated convex subgroup {0}.

Proof. By our choice of the ai ,
vpp

pi
= vpai ∈ vpL1(ai). Therefore,

pi ≤ (vpL1(ai) : vpL1) ≤ (vpL1(ai) : vpL1)[L1(ai)vp : L1vp] ≤ [L1(ai) : L1] ≤ pi .

Hence equality holds everywhere, and [L1(ai)vp : L1vp] = 1. We thus obtain that
vpL1(ai) =

1
pi
vpL1 and L1(ai)vp = L1vp. Consequently,

vpL2 =
⋃
i∈N

vpL1(ai) =
1

p∞
Z and L2vp = L1vp = K ,

and the extension (L2|L1, vp) is unibranched, which proves assertion 1). We see
that vpL2 is p-divisible, so (L2, vp) satisfies (DRvg). In order to show that (L2, vp)
is a deeply ramified field it remains to show that it satisfies (DRvr).

Take b ∈ OL2 . Then b ∈ L1(ai) for some i ∈ N and we can write

b =

pi−1∑
j=0

cja
j
i

with cj ∈ L1 . Since the values vpa
j
i , 0 ≤ j ≤ pi−1 lie in distinct cosets modulo vpL1

(hence the elements aji , 0 ≤ j ≤ pi − 1 form a valuation basis of (L1(ai)|L1, vp)),

we have that vpb = min0≤j≤pi−1 vpcja
j
i . As b ∈ OL2 , it follows that cja

j
i ∈ OL2 for

all j. We observe that vpa
j
i ≤ pi−1

pi
vpp < vpp, so vpcj ∈ Zvpp cannot be negative.

This shows that cj ∈ OL1 for all j.
For every c ∈ OL1 there is d ∈ OL1 such that c ≡ dp mod pOL1 ; indeed, as K

is perfect, there is ξ ∈ K such that cvp = ξp, so we can choose d ∈ OL1 such that
dvp = ξ. Then we obtain vp(c− d) ≥ vpp.
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For each j we now choose dj ∈ L1 such that cj ≡ dpj mod pOL1 . Thenpi−1∑
j=0

dja
j
i+1

p

≡
pi−1∑
j=0

dpj(a
p
i+1)

j ≡
pi−1∑
j=0

cja
j
i = b mod pOL1(ai) .

In view of [16, Lemma 4.1 (2)], this shows that (K, vp) satisfies (DRvr) and is
therefore a deeply ramified field, which proves assertion 2).

Our next aim is to show that the extension (L2(a)|L2, vp) is nontrivial and im-
mediate. For each i ∈ N, we set

bi =
i∑

j=1

1

aj
∈ L1(ai)

and compute, using [16, Lemma 2.17 (2)]:

(a− bi)
p − (a− bi) ≡ ap −

i∑
j=1

1

apj
− a+

i∑
j=1

1

aj

=
1

p
− 1

p
−

i−1∑
j=1

1

aj
+

i∑
j=1

1

aj
=

1

ai
mod OL1(ai) .

It follows that vp(a− bi) < 0 and

−vpp

pi
= vp

1

ai
= min{pvp(a− bi), vp(a− bi)} = pvp(a− bi) ,

whence

(62) vp(a− bi) = − vpp

pi+1
.

We have that

p ≤ (vpL1(ai, a) : vpL1(ai)) ≤ (vpL1(ai, a) : vpL1(ai))[L1(ai, a)vp : L1(ai)vp]

≤ [L1(ai, a) : L1] ≤ p .

Thus equality holds everywhere and we have that (vpL1(ai, a) : vpL1(ai)) = p,
the extension is unibranched, L1(ai, a)vp = L1(ai)vp = L1vp, and for all i ∈ N,
a /∈ L1(ai). Hence a /∈ L2, and we have:

vpL2(a) =
⋃
i∈N

vpL1(ai, a) =
1

p∞
Z = vpL2 and L2(a)vp = L1vp = L2vp .

This shows that (L2(a)|L2, vp) is nontrivial and immediate, as asserted. The exten-
sion is also unibranched since each extension (L1(ai, a)|L1(ai), vp) is unibranched.
Therefore, it is a defect extension of degree p, which proves assertion 3).

Since [L0(a) : L0] = p, there is an element ζ ′ ∈ Lac
0 such that [L0(ζ

′) : L0] divides
(p − 1)! and L0(a, ζ

′)|L0(ζ
′) is Galois. As (L0, vp) is henselian, p does not divide

[L0(ζ
′) : L0], and L0vp is algebraically closed, the Lemma of Ostrowski shows that

[L0(ζ
′) : L0] = (vpL0(ζ

′) : vpL0). It follows that also [L1(ζ
′) : L1] = (vpL1(ζ

′) :
vpL1), and that (L1(ζ

′)|L1, vp) is a tame extension. Hence by Lemma 6.1, also
(L1(a, ζ

′)|L1(ζ
′), vp) is a defect extension. By [16, Theorem 1.5], the algebraic ex-

tension (L1(ζ
′), vp) of (L1, vp) is again a deeply ramified field and hence an rdr field.
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Thus it follows from Theorem 1.2 that the Galois extension (L1(a, ζ
′)|L1(ζ

′), vp) has
independent defect. Since (L2, vp) has rank 1, the convex subgroup associated with
the extension (L2(ζ

′, a)|L2(ζ
′), vp) is {0}. With L := L2(ζ

′), we have now proved
assertion 4). □

6.3. The case of equal characteristic: some examples.

Example 6.7. Take K0 = Fp((t)). Then K := K
1/p∞

0 = Fp((t))
1/p∞ is a perfect

field, so under the canonical t-adic valuation vt it is a deeply ramified field. More-

over, (K, vt) is henselian and of rank 1. Now set L0 := K((x)) and L := L
1/p∞

0 , and
equip L with the canonical x-adic valuation vx . Both vx and vt are henselian, hence
so is their composition v := vx ◦ vt on L. As L is perfect, (L, v) is a deeply ramified
field. Its value group vL has rank 2, i.e., it has two proper convex subgroups. Let
ϑt be a root of Xp −X − 1

t
, and ϑx a root of Xp −X − 1

x
. We note that K = Lvx.

By part 1) of Lemma 6.4, both extensions (L(ϑx)|L, v) and (L(ϑx)|L, vx) are
defect extensions with independent defect. By part 2) of Lemma 6.4, vx(ϑx−L) =
vxL

<0, which by part 1) of Lemma 6.5 implies that v(ϑx−L) = {α ∈ vL | α < vtK}.
Hence for Ex = (L(ϑx)|L, v), its associated convex subgroup HEx is the convex
subgroup vtK of vL.
Again by part 1) of Lemma 6.4, the extension (K(ϑt)|K, vt) has independent

defect, and by part 2) of Lemma 6.4, vt(ϑt−K) = vtK
<0. By part 2) of Lemma 6.5,

(L(ϑt)|L, v) is a defect extension with v(ϑt−L) = (vL(ϑt)
<0. Therefore, {0} is the

convex subgroup associated with the defect extension (L(ϑt)|L, v).
We have shown that both convex subgroups of vL, vtK and {0}, appear as the

convex subgroups associated with Galois defect extensions of (L, v). ♢

Let us present a modification of this example.

Example 6.8. In the previous example, we replace K by some algebraically closed
(or just henselian defectless) field with an arbitrary nontrivial valuation vt . Then
(K, vt) has no defect extensions, and H = vtK will be the only convex subgroup
of vL associated with Galois defect extensions. This is seen as follows. As in
Example 6.7 we have that (L(ϑx)|L, v) is a defect extension with v(ϑx − L) =
{α ∈ vL | α < vtK}. On the other hand, suppose that there is a defect extension
(L(ϑ)|L, v) with v(ϑ− L) = vL<0. Then there is b ∈ L such that v(ϑ− b) ∈ vtK.
Set ϑ̄ := (ϑ − b)vx . Since ϑ − b is a root of an Artin-Schreier polynomial over L,
ϑ̄ is a root of an Artin-Schreier polynomial over K. By construction, (K(ϑ̄)|K, vt)
cannot be a defect extension, so there is c̄ ∈ K such that vt(ϑ̄− c̄) is the maximum
of vt(ϑ̄−K). Choose c ∈ L such that cvx = c̄. Then v(ϑ− b− c) is the maximum
of v(ϑ− L), contradicting our assumption that (L(ϑ)|L, v) is a defect extension.

At the other extreme, we can keep (K, vt) and (L0, vx) as in the previous example,
but now take (L, vx) to be a maximal purely wild extension of (L0, vx). As L0vx = K
is perfect, we have Lvx = L0vx = K. By Lemma 6.2, (L, vx) is a tame field and
thus has no defect extensions. Therefore vtK cannot appear as a convex subgroup
associated with any Galois defect extension; indeed, if v(ϑ − L) = {α ∈ vL | α <
vtK}, then by part 1) of Lemma 6.5, (L(ϑ)|L, vx) would be a defect extension.
However, as in the previous example one shows that Et = (L(ϑt)|L, v) is a defect
extension with HEt = {0}. ♢
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6.4. The case of equal characteristic: a general construction. We will now
present a much more general construction. Given any ordered index set I and
for every i ∈ I an arbitrary ordered abelian group Ci , we can form the Hahn
sum

∐
i∈I Ci . As an abelian group, this is the direct sum of the groups Ci ,

represented as the set of all tuples (αi)i∈I with only finitely many of the αi ∈ Ci

nonzero. An ordering on
∐

i∈I Ci is introduced as follows. For (αi)i∈I ∈
∐

i∈I Ci ,
set imin := min{i ∈ I | αi ̸= 0}. Then define (αi)i∈I > 0 if αimin

> 0. If all Ci are
archimedean ordered, then the principal convex subgroups are exactly the subsets of
the form {(αi)i∈I ∈

∐
i∈I Ci | αi = 0 for all i < i0} for some i0 ∈ I; this subgroup is

generated by any (αi)i∈I ∈
∐

i∈I Ci with αi0 ̸= 0; likewise, the subprincipal convex
subgroups are exactly the subsets of the form {(αi)i∈I ∈

∐
i∈I Ci | αi = 0 for all i ≤

i0} for some i0 ∈ I.
Now take any ordered index set I. Set Ci = Z for all I and let Γ0 be the Hahn

sum
∐

i∈I Ci . For each ℓ ∈ I let 1ℓ denote the element (αi)i∈I with αi = 1 ∈ Z
if i = ℓ and αi = 0 otherwise. Now the elements 1ℓ generate all principal convex
subgroups of Γ0 . Note that if ℓ < ℓ′, then 1ℓ ≫ 1ℓ′ , that is, 1ℓ > n1ℓ′ for all n ∈ N.
Take a perfect field k of characteristic p > 0 and a set {ti | i ∈ I} of elements

algebraically independent over k and define a valuation v on the field k(ti | i ∈ I) by
setting vti = 1i for each i ∈ I. Let (K0, v) be the henselization of (k(ti | i ∈ I), v).

For each i ∈ I there are:

• a decomposition v = vi ◦ v̄i , where vi is the finest coarsening of v on K0 that is
trivial on ti and v̄i is the valuation induced by v on the residue field K0vi , which
can be identified with k(tj | i ≤ j ∈ I), and

• a decomposition v̄i = wi ◦ w̄i , where wi is the ti-adic valuation on K0vi and w̄i

is the valuation induced by v̄i on the residue field K0viwi , which can be identified
with k(tj | i < j ∈ I).

Note that vj is strictly coarser than vi if j < i.

We takeK1 to be the perfect hull ofK0, that is,K1 = k(t
1/pn

i | i ∈ I, n ∈ N). The
valuations v and vi , i ∈ I, have unique extensions to K1 , and vK1 is the p-divisible

hull 1
p∞

Γ of vK0 . Further, K1vi is the perfect hull k(t
1/pn

j | i ≤ j ∈ I, n ∈ N) of
k(tj | i ≤ j ∈ I), so the valuations v̄i and wi have unique extensions to K1vi and
the decompositions v = vi ◦ v̄i again hold on K1 . Likewise, K1viwi is the perfect

hull k(t
1/pn

j | i < j ∈ I, n ∈ N) of k(tj | i < j ∈ I), so also the valuations v̄i have
unique extensions to K1viwi and the decompositions vi = wi ◦ w̄i again hold on
K1 .

We set Γ := vK1 = 1
p∞

Γ0 and define Hi to be the largest convex subgroup of

Γ that does not contain 1i , that is, Hi = w̄i(K1viwi). Consequently, the Hi are
exactly all subprincipal convex subgroups of Γ. The principal convex subgroups of
Γ are exactly all smallest convex subgroups that contain 1i for some i ∈ I; they
are of the form v̄i(K1vi).

The next theorem proves part 1) of Theorem 1.4.

Theorem 6.9. Take any subset J ⊆ I. Then there exists an algebraic extension
(K2, v) of (K1, v) which is a henselian deeply ramified field and such that the convex
subgroups associated with Galois defect extensions of prime degree of (K2, v) are
exactly the convex subgroups Hj with j ∈ J .
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Proof. Since (K1, v) is henselian and perfect, each algebraic extension (K, v) of
(K1, v) is a henselian deeply ramified field.

For each i ∈ I we let ϑi be a root of Xp−X− 1
ti
. Since vi is trivial on ti , we can

identify ϑi with ϑivi . By part 1) of Lemma 6.4, (K1(ϑi)|K1, v), (K1vi(ϑi)|K1vi, v̄i)
and (K1vi(ϑi)|K1vi, wi) are defect extensions with independent defect. By con-

struction, K1vi = K1viwi(t
1/pn

i | n ∈ N) = K1viwi(ti)
1/p∞ , where K1viwi is a

perfect field. Hence by part 2) of Lemma 6.4, wi(ϑi − K1vi) = (wi(K1vi))
<0,

which by part 1) of Lemma 6.5 implies that v̄i(ϑi − K1vi) = {α ∈ v̄i(K1vi) |
α < v̄i(K1viwi)} = {α ∈ v̄i(K1vi) | α < Hi}. We claim that this implies that
v(ϑi −K1) = {α ∈ vK1 | α < Hi}, that is, Hi is the convex subgroup associated
with the defect extension (K1(ϑi)|K1, v). For the proof of the claim, observe that
K1vi ⊂ K1 and v|K1vi = v̄1 ; so v̄i(ϑi − K1vi) ⊆ v(ϑi − K1). We show that the
former is cofinal in the latter, which will prove our claim. Take any c ∈ K1. If
vc < vϑi , then v̄iϑi = vϑi > v(ϑi − c). If vc ≥ vϑi , then we can write c = cvi + c′

with cvi ∈ K1vi and c′ ∈ K1 with vic
′ > 0. It follows that vc′ > v̄i(K1vi) and con-

sequently, vc′ > v̄i(ϑi − cvi) and v(ϑi − c) = vi(ϑi − cvi) ∈ v̄i(ϑi −K1vi). Hence by
our construction, all Hi for i ∈ I appear as the convex subgroups associated with
Galois defect extensions of (K1, v). We now have to find an algebraic extension of
(K1, v) which will admit exactly all Hi for i ∈ I \ J .
Let (K2, v) be a maximal algebraic extension of (K1, v) for which vK2 = vK1 ,

the above decompositions carry over to K2 for suitable extensions of the valuations
vi, v̄i, wi, v̄i , and for all j ∈ J , K2vj = K2vjwj(tj)

1/p∞ . As K2vjwj is perfect, being
an algebraic extension of the perfect field K1vjwj, part 2) of Lemma 6.4 shows that
(K2vj(ϑj)|K2vj, wj) is (still) a defect extension with wj(ϑj−K2vj) = (wj(K2vj))

<0.
By part 2) of Lemma 6.5, (K2(ϑj)|K2, vj ◦ wj) is a defect extension with vj ◦
wj(ϑj − K2) = (vj ◦ wj(K2))

<0. Now by part 1) of Lemma 6.5, (K2(ϑj)|K2, v)
is a defect extension with v(ϑj − K2) = {α ∈ vK2 | α < v̄j(K2vjwj)}, that is,
Hj = v̄j(K1vjwj) = v̄j(K2vjwj) is its associated convex subgroup.

Suppose that there is some i ∈ I \ J such that Hi is also the convex subgroup
associated with some Galois defect extension of (K2, v). In this case we take (L,wi)
to be a maximal purely wild extension (L,wi) of (K2vi, wi). By Lemma 6.2, (L,wi)
is a tame field and thus does not have any nontrivial defect extensions. As K2vi is
perfect, being an algebraic extension of K1vi , we have that (L,wi) is an immediate
extension of (K2vi, wi), that is, wiL = wi(K2vi) and Lwi = K2viwi . We take
(K3, vi) to be an algebraic extension of (K2, vi) such that viK3 = viK2 and K3vi =
L, and that [K ′

2 : K2] = [K ′
2vi : K2vi] holds for every finite subextension K ′

2|K2

of K3|K2; for the construction of such extensions, see [7, Section 2.3]. We set
v = vi ◦ wi ◦ v̄i on K3; since viK3 = viK2 and (K3vi, wi) = (L,wi) is an immediate
extension of (K2vi, wi), also (K3, v) is an immediate extension of (K2, v).

Take any j ∈ J ; we will show that we still have K3vj = K3vjwj(ti)
1/p∞ . Since

K3viwi is perfect, being an algebraic extension of the perfect field K1viwi , it will
then follow as in the beginning of this proof that (K3(ϑj)|K3, v) is still a defect
extension with associated convex subgroup Hj .

First assume that j > i. Then K3vj = K2vj = K2vjwj(tj)
1/p∞ = K3vjwj(tj)

1/p∞

since K3viwi = Lwi = K2viwi and K3vj and K3vjwj are equal to or residue fields
of K3viwi .
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Now assume that j < i. Suppose that K3vj properly contains K3vjwj(tj)
1/p∞ .

Then there is a finite subextension K ′
2|K2 of K3|K2 such that K ′

2vj properly con-
tains K ′

2vjwj(tj)
1/p∞ . Using that K2vj = K2vjwj(tj)

1/p∞ and that K ′
2vi is equal to

or a residue field of K ′
2vjwj and K2vi is equal to or a residue field of K2vjwj , we

compute:

[K ′
2 : K2] ≥ [K ′

2vj : K2vj] > [K ′
2vjwj(tj)

1/p∞ : K2vjwj(tj)
1/p∞ ]

= [K ′
2vjwj : K2vjwj] ≥ [K ′

2vi : K2vi] = [K ′
2 : K2] .

This contradiction proves that K3vj = K3vjwj(ti)
1/p∞ also holds in this case.

Finally, we show that Hi cannot appear as the convex subgroup associated with
any Galois defect extension of (K3, v). This will contradict the maximality of
(K2, v) and show that it satisfies the statement of our theorem. Suppose the con-
trary, and let (K3(ϑ)|K3, v) be an Artin-Schreier defect extension with Hi as its
associated convex subgroup. Since v̄i(K3vi) properly contains Hi = v̄i(K1viwi), it
follows that there is some b ∈ K3 such that v(ϑ− b) ∈ v̄i(K3vi). With ϑ′ := ϑ− b
we obtain that v̄i(ϑ

′−K3vi) = {α ∈ v̄i(K3vi) | α < v̄i(K1viwi)}. Hence Lemma 6.3
shows that (K3vi(ϑvi)|K3vi, v̄i) is a nontrivial defect extension. Thus by part 1)
of Lemma 6.5, also (K3vi(ϑvi)|K3vi, wi) is a nontrivial defect extension. However,
this contradicts the fact that by our construction, (K3vi, wi) is a tame and thus
defectless field with respect to wi . □

6.5. The case of mixed characteristic. We choose a perfect field K of char-
acteristic p > 0 containing Fac

p . We denote the p-adic valuation on Q by vp and
take an algebraic extension (L0, vp) such that (L0, vp) is henselian, vpL0 = vpQ
and L0vp = Fac

p . Then we construct an extension (L1, vp) of (L0, vp) such that
vpL1 = vpQ and L1vp = K. See [7, Section 2.3] for information on the construction
of such extensions. By Proposition 6.6 there is an algebraic extension (L, vp) of
(L0, vp) such that Lvp = K and (L, vp) is a deeply ramified field admitting a Galois
defect extension (L(a)|L, vp) of degree p with independent defect and associated
convex subgroup {0}.

Example 6.10. Now take any nontrivial valuation v̄ on K. If we choose K to
be algebraically closed, then it does not admit any Galois defect extension. Still,
(L(a)|L, vp ◦ v̄) is a Galois defect extension, and as the convex subgroup associated
with the extension (L(a)|L, vp) is {0}, by part 1) of Lemma 6.5 the convex sub-
group associated with the extension (L(a)|L, vp ◦ v̄) is v̄K. This is the only convex
subgroup of (vp ◦ v̄)L that appears as convex subgroup associated with some Galois
defect extension of (L, vp ◦ v̄). ♢

The situation changes when (K, v̄) itself admits Galois defect extensions. Then
these can be lifted to Galois defect extensions of (L, vp ◦ v̄), and the convex sub-
groups associated with Galois defect extensions of (K, v̄) appear as convex sub-
groups associated with Galois defect extensions of (L, vp ◦ v̄) that are properly
contained in v̄(Lvp). This will be exploited in the

Proof of part 2) of Theorem 1.4. Let ∆ denote the largest proper convex subgroup
of Γ. Denote by Csp

∆ the set of all proper convex subgroups of ∆ in Csp. By part 1) of
Theorem 1.4 we can choose a perfect henselian valued field (K, v̄) of characteristic
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p for which the associated convex subgroups are exactly the elements of Csp
∆ . We

take (L, vp) as described at the beginning of this section and consider (L, vp ◦ v̄)
which is a deeply ramified field since (L, vp) is and K is perfect.

Now v̄K is the largest proper convex subgroup of (vp ◦ v̄)L and it is shown as in
the proof of part 1) of Theorem 1.4 that a convex subgroup of v̄K is an associated
convex subgroup for (K, v̄) if and only if it is an associated convex subgroup for
(L, vp ◦ v̄).

It remains to deal with the convex subgroup v̄K of vp ◦ v̄L. If it is an element of
Csp, then we are done because (L(a)|L, vp) is a Galois defect extension of degree p
with independent defect, and it follows that also (L(a)|L, vp ◦ v̄) is a Galois defect
extension of degree p with independent defect.

Finally, assume that v̄K is not an element of Csp. Then we replace (L, vp) by a
maximal purely wild extension, which does not change the residue field K because
it is perfect, and is a tame field by Lemma 6.2. After this, (L, vp) does not admit
any defect extension and v̄K cannot be an associated convex subgroup for (L, vp).
It is then shown as in the proof of part 1) of Theorem 1.4 that it also cannot be
an associated convex subgroup for (L, vp ◦ v̄). This completes the proof of part 2)
of Theorem 1.4. □
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